OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 17 — Aug. 25, 2014
  • pp: 20446–20456

Characterization of graphene layers using super resolution polarization parameter indirect microscopic imaging

Xuefeng Liu, Bocang Qiu, Qin Chen, Zhenhua Ni, Yonghua Jiang, Mingsheng Long, and Linqing Gui  »View Author Affiliations


Optics Express, Vol. 22, Issue 17, pp. 20446-20456 (2014)
http://dx.doi.org/10.1364/OE.22.020446


View Full Text Article

Enhanced HTML    Acrobat PDF (8384 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the development of super-resolution polarization (parameter) indirect microscopic imaging (PIMI) and its application to visualizing and quantifying graphene layer’s morphological and structural features. The PIMI system was built by modifying a conventional optical microcopy such that the variation of the polarization status of incident light can be precisely controlled, imaging was subsequently acquired by analyzing the dependence of the optical intensity transmitted through (or reflected from) the samples on the incident light polarization status. Measurements on the thickness as well as other structural features of graphene samples which had been prepared by different methods were performed. The results which were highly consistent to those measured by Raman spectroscopy indicate that the PIMI system is capable of characterizing graphene’s dimensional and structural features with super resolution.

© 2014 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.4640) Instrumentation, measurement, and metrology : Optical instruments

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: July 2, 2014
Revised Manuscript: August 7, 2014
Manuscript Accepted: August 7, 2014
Published: August 15, 2014

Citation
Xuefeng Liu, Bocang Qiu, Qin Chen, Zhenhua Ni, Yonghua Jiang, Mingsheng Long, and Linqing Gui, "Characterization of graphene layers using super resolution polarization parameter indirect microscopic imaging," Opt. Express 22, 20446-20456 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-17-20446


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Stolyarova, K. T. Rim, S. Ryu, J. Maultzsch, P. Kim, L. E. Brus, T. F. Heinz, M. S. Hybertsen, and G. W. Flynn, “High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface,” Proc. Natl. Acad. Sci. U.S.A.104(22), 9209–9212 (2007). [CrossRef] [PubMed]
  2. C. Cong, K. Li, X. X. Zhang, and T. Yu, “Visualization of arrangements of carbon atoms in graphene layers by Raman mapping and atomic-resolution TEM,” Sci. Rep.3, 1195 (2013).
  3. S. T. Park, A. Yurtsever, J. S. Baskin, and A. H. Zewail, “Graphene-layered steps and their fields visualized by 4D electron microscopy,” Proc. Natl. Acad. Sci. U.S.A.110(23), 9277–9282 (2013). [CrossRef] [PubMed]
  4. E. Treossi, M. Melucci, A. Liscio, M. Gazzano, P. Samorì, and V. Palermo, “High-contrast visualization of graphene oxide on dye-sensitized glass, quartz, and silicon by fluorescence quenching,” J. Am. Chem. Soc.131(43), 15576–15577 (2009). [CrossRef] [PubMed]
  5. P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett.91(6), 063124 (2007). [CrossRef]
  6. D. S. L. Abergel, A. Russell, and V. I. Fal’ko, “Visibility of graphene flakes on a dielectric substrate,” Appl. Phys. Lett.91(6), 063125 (2007).
  7. Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett.7(9), 2758–2763 (2007). [CrossRef] [PubMed]
  8. H. Yang, H. Hu, Y. Wang, and T. Yu, “Rapid and non-destructive identification of graphene oxide thickness using white light contrast spectroscopy,” Carbon5, 2528 (2013).
  9. I. Jung, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, S. Watcharotone, M. Hausner, and R. S. Ruoff, “Simple approach for high-contrast optical imaging and characterization of graphene-based sheets,” Nano Lett.7(12), 3569–3575 (2007). [CrossRef]
  10. J. Kim, F. Kim, and J. Huang, “Seeing graphene-based sheets,” Mater. Today13(3), 28–38 (2010). [CrossRef]
  11. D. L. Duong, G. H. Han, S. M. Lee, F. Gunes, E. S. Kim, S. T. Kim, H. Kim, Q. H. Ta, K. P. So, S. J. Yoon, S. J. Chae, Y. W. Jo, M. H. Park, S. H. Chae, S. C. Lim, J. Y. Choi, and Y. H. Lee, “Probing graphene grain boundaries with optical microscopy,” Nature490(7419), 235–239 (2012). [CrossRef] [PubMed]
  12. H. Gonçalves, L. Alves, C. Moura, M. Belsley, T. Stauber, and P. Schellenberg, “Enhancement of graphene visibility on transparent substrates by refractive index optimization,” Opt. Express21(10), 12934–12941 (2013). [CrossRef] [PubMed]
  13. H. Goncalves, M. Belsley, C. Moura, T. Stauber, and P. Schellenberg, “Enhancing visibility of graphene on arbitrary substrates by microdroplet condensation,” Appl. Phys. Lett.97(23), 231905 (2010). [CrossRef]
  14. Q. Zhan and J. R. Leger, “High-resolution imaging ellipsometer,” Appl. Opt.41(22), 4443–4450 (2002). [CrossRef] [PubMed]
  15. T. G. Browna, M. A. Alonso, and A. Vella, “Focused beam scatterometry for deep subwavelength metrology,” Proc. SPIE8949, 89490Y1 (2014).
  16. J. J. M. Braat, S. van Haver, A. J. E. M. Janssen, and P. Dirksen, “Assessment of optical systems by means of point-spread functions,” in Progress in Optics, Emil Wolf, ed. (Elsevier, 2008).
  17. J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, S. van Haver, and A. S. van de Nes, “Extended Nijboer-Zernike approach to aberration and birefringence retrieval in a high-numerical-aperture optical system,” J. Opt. Soc. Am. A22(12), 2635–2650 (2005). [CrossRef] [PubMed]
  18. J. S. Tyo, “Enhancement of the point-spread function for imaging in scattering media by use of polarization-difference imaging,” J. Opt. Soc. Am. A17(1), 1–10 (2000). [CrossRef] [PubMed]
  19. O. G. Rodríguez-Herrera, D. Lara, and C. Dainty, “Far-field polarization-based sensitivity to sub-resolution displacements of a sub-resolution scatterer in tightly focused fields,” Opt. Express18(6), 5609–5628 (2010). [CrossRef] [PubMed]
  20. P. W. Lucas, M. Fukagawa, M. Tamura, A. F. Beckford, Y. Itoh, K. Murakawa, H. Suto, S. S. Hayashi, Y. Oasa, T. Naoi, Y. Doi, N. Ebizuka, and N. Kaifu, “High-resolution imaging polarimetry of HL Tau and magnetic field structure,” Mon. Not. R. Astron. Soc.352(4), 1347–1364 (2004). [CrossRef]
  21. K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nat. Photonics2(5), 311–314 (2008). [CrossRef]
  22. A. Echalier, R. L. Glazer, V. Fülöp, and M. A. Geday, “Assessing crystallization droplets using birefringence,” Acta Crystallogr. D Biol. Crystallogr.60(4), 696–702 (2004). [CrossRef] [PubMed]
  23. C. Ye, S. Liu, X. Teng, Q. Fang, and G. Li, “Morphological and optical characteristics of nanocrystalline TiO2 thin films by quantitative optical anisotropy and imaging techniques,” Meas. Sci. Technol.17(2), 436–440 (2006). [CrossRef]
  24. S. B. Potter, E. Romero-Colmenero, C. A. Watson, D. A. H. Buckley, and A. Phillips, “Stokes imaging, Doppler mapping and Roche tomography of the AM Herculis system V834 Cen,” Mon. Not. R. Astron. Soc.348(1), 316–324 (2004). [CrossRef]
  25. E. Collett, “Field guide to polarization,” in SPIE Field Guides, J. E. Greivenkamp, ed. (SPIE Press, 2005).
  26. G. McIntyre and A. Neureuther, “PSM polarimetry: monitoring polarization at 193nm high-NA and immersion with phase shifting masks,” MEMS MOEMS.4, 031102 (2005).
  27. Q. Zhao, F. Liu, L. Zhang, and D. Zhang, “A comparative study on quality assessment of high resolution fingerprint images,” in Proceedings of 17th IEEE International Conference on Image Processing (IEEE, 2010), pp. 3089–3092. [CrossRef]
  28. P. K. Pandey, Y. Singh, and S. Tripathi, “Image processing using principle component analysis,” Int. J. Comput. Appl.15, 37 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited