OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 17 — Aug. 25, 2014
  • pp: 20500–20514

Analytical model of optical fluence inside multiple cylindrical inhomogeneities embedded in an otherwise homogeneous turbid medium for quantitative photoacoustic imaging

Shengfu Li, Bruno Montcel, Wanyu Liu, and Didier Vray  »View Author Affiliations

Optics Express, Vol. 22, Issue 17, pp. 20500-20514 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2146 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an analytical model of optical fluence for multiple cylindrical inhomogeneities embedded in an otherwise homogeneous turbid medium. The model is based on the diffusion equation and represents the optical fluence distribution inside and outside inhomogeneities as a series of modified Bessel functions. We take into account the interplay between cylindrical inhomogeneities by introducing new boundary conditions on the surface of inhomogeneities. The model is compared with the numerical solution of the diffusion equation with NIRFAST software. The fluences inside the inhomogeneities obtained by the two methods are in close agreement. This permits the use of the model as a forward model for quantitative photoacoustic imaging.

© 2014 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(290.1990) Scattering : Diffusion

ToC Category:
Imaging Systems

Original Manuscript: July 7, 2014
Revised Manuscript: August 4, 2014
Manuscript Accepted: August 5, 2014
Published: August 18, 2014

Virtual Issues
Vol. 9, Iss. 10 Virtual Journal for Biomedical Optics

Shengfu Li, Bruno Montcel, Wanyu Liu, and Didier Vray, "Analytical model of optical fluence inside multiple cylindrical inhomogeneities embedded in an otherwise homogeneous turbid medium for quantitative photoacoustic imaging," Opt. Express 22, 20500-20514 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express15(11), 6696–6716 (2007). [CrossRef] [PubMed]
  2. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A.97(6), 2767–2772 (2000). [CrossRef] [PubMed]
  3. D. A. Boas, T. Gaudette, G. Strangman, X. Cheng, J. J. Marota, and J. B. Mandeville, “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics,” Neuroimage13(1), 76–90 (2001). [CrossRef] [PubMed]
  4. B. T. Cox, J. G. Laufer, and P. C. Beard, “Quantitative Photoacoustic Image Reconstruction using Fluence Dependent Chromophores,” Biomed. Opt. Express1(1), 201–208 (2010). [CrossRef] [PubMed]
  5. B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt.17(6), 061202 (2012). [CrossRef] [PubMed]
  6. Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett.88(23), 231101 (2006). [CrossRef]
  7. Q. Fang, “Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates,” Biomed. Opt. Express1(1), 165–175 (2010). [CrossRef] [PubMed]
  8. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express17(22), 20178–20190 (2009). [CrossRef] [PubMed]
  9. D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express10(3), 159–170 (2002). [CrossRef] [PubMed]
  10. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009). [CrossRef] [PubMed]
  11. M. Jermyn, H. Ghadyani, M. A. Mastanduno, W. Turner, S. C. Davis, H. Dehghani, and B. W. Pogue, “Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography,” J. Biomed. Opt.18(8), 086007 (2013). [CrossRef] [PubMed]
  12. T. Tarvainen, M. Vauhkonen, and S. R. Arridge, “Gauss–Newton reconstruction method for optical tomography using the finite element solution of the radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transf.109(17-18), 2767–2778 (2008). [CrossRef]
  13. Z. G. Wang, L. Z. Sun, L. L. Fajardo, and G. Wang, “Modeling and reconstruction of diffuse optical tomography using adjoint method,” Commun. Numer. Methods Eng.25(6), 657–665 (2009). [CrossRef]
  14. L. Yao and H. Jiang, “Finite-element-based photoacoustic tomography in time domain,” J. Opt. A, Pure Appl. Opt.11(8), 085301 (2009). [CrossRef]
  15. Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography,” Philos. Trans. R. Soc. Lond. A367, 3043–3054 (2009).
  16. Y. Zhai and S. A. Cummer, “Fast tomographic reconstruction strategy for diffuse optical tomography,” Opt. Express17(7), 5285–5297 (2009). [CrossRef] [PubMed]
  17. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt.28(12), 2331–2336 (1989). [CrossRef] [PubMed]
  18. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A14(1), 246–254 (1997). [CrossRef] [PubMed]
  19. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. U.S.A.91(11), 4887–4891 (1994). [CrossRef] [PubMed]
  20. S. A. Walker, D. A. Boas, and E. Gratton, “Photon density waves scattered from cylindrical inhomogeneities: theory and experiments,” Appl. Opt.37(10), 1935–1944 (1998). [CrossRef] [PubMed]
  21. H. O. Di Rocco, D. I. Iriarte, M. Lester, J. Pomarico, and H. F. Ranea-Sandoval, “CW laser transilluminance in turbid media with cylindrical inclusions,” Opt. Int. J. Light Electron Opt.122(7), 577–581 (2011). [CrossRef]
  22. J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(5), 051917 (2001). [CrossRef] [PubMed]
  23. J. Ripoll, V. Ntziachristos, and E. N. Economou, “Experimental demonstration of a fast analytical method for modeling photon propagation in diffusive media with arbitrary geometry,” Proc. SPIE4431, 233–239 (2001). [CrossRef]
  24. X.-P. Wu, J.-M. Shi, and J.-C. Wang, “Multiple Scattering by Parallel Plasma Cylinders,” IEEE Trans. Plasma Sci.42(1), 13–19 (2014). [CrossRef]
  25. S.-C. Lee, “Scattering of evanescent wave by multiple parallel infinite cylinders near a surface,” IEEE Trans. Plasma Sci.147, 252–260 (2014).
  26. M. I. Mishchenko, L. D. Travis, and A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt.35(24), 4927–4940 (1996). [CrossRef] [PubMed]
  27. D. Felbacq, G. Tayeb, and D. Maystre, “Scattering by a random set of parallel cylinders,” J. Opt. Soc. Am. A11(9), 2526–2538 (1994). [CrossRef]
  28. V. M. Twersky, “Multiple Scattering of Radiation by an Arbitrary Configuration of Parallel Cylinders,” J. Acoust. Soc. Am.24(1), 42–46 (1952). [CrossRef]
  29. C. M. Linton and P. A. Martin, “Multiple scattering by random configurations of circular cylinders: Second-order corrections for the effective wavenumber,” J. Acoust. Soc. Am.117(6), 3413–3423 (2005). [CrossRef] [PubMed]
  30. J. W. Young and J. C. Bertrand, “Multiple scattering by two cylinders,” J. Acoust. Soc. Am.77, 1190–1195 (1976).
  31. W. H. Lin and A. C. Raptis, “Sound scattering by a group of oscillatory cylinders,” J. Acoust. Soc. Am.77(1), 15–28 (1985). [CrossRef]
  32. X. Cheng and D. Boas, “Diffuse optical reflection tomography using continuous wave illumination,” Opt. Express3(3), 118–123 (1998). [CrossRef] [PubMed]
  33. A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today48(3), 34–40 (1995). [CrossRef]
  34. A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol.43(5), 1285–1302 (1998). [CrossRef] [PubMed]
  35. J. D. Jackson, Classical Electrodynamics, (Wiley, 1975), Chap. 3.
  36. X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt.35(19), 3746–3758 (1996). [CrossRef] [PubMed]
  37. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited