OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 17 — Aug. 25, 2014
  • pp: 20551–20565

Enhanced-resolution using modified configuration of Fresnel incoherent holographic recorder with synthetic aperture

Yuval Kashter and Joseph Rosen  »View Author Affiliations


Optics Express, Vol. 22, Issue 17, pp. 20551-20565 (2014)
http://dx.doi.org/10.1364/OE.22.020551


View Full Text Article

Enhanced HTML    Acrobat PDF (1124 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Synthetic aperture methods are commonly-used techniques for providing images with super-resolution qualities. We propose an improved design of the system, coined “synthetic aperture with Fresnel elements”. The super-resolution capabilities of the proposed scheme are analyzed and experimentally demonstrated.

© 2014 Optical Society of America

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(090.0090) Holography : Holography
(090.1760) Holography : Computer holography
(090.2890) Holography : Holographic optical elements
(110.6770) Imaging systems : Telescopes
(280.6730) Remote sensing and sensors : Synthetic aperture radar
(050.1965) Diffraction and gratings : Diffractive lenses
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
Holography

History
Original Manuscript: June 10, 2014
Revised Manuscript: July 28, 2014
Manuscript Accepted: August 3, 2014
Published: August 18, 2014

Citation
Yuval Kashter and Joseph Rosen, "Enhanced-resolution using modified configuration of Fresnel incoherent holographic recorder with synthetic aperture," Opt. Express 22, 20551-20565 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-17-20551


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Abbe, “Beitrage zür theorie des mikroskops und der mikroskopischen wahrnehmung,” Archiv. Microskopische Anat.9(1), 413–418 (1873). [CrossRef]
  2. A. A. Michelson, “On the application of interference methods to astronomical measurements,” Proc. Natl. Acad. Sci. U.S.A.6(8), 474–475 (1920). [CrossRef] [PubMed]
  3. P. R. Lawson, Selected Paper on Long Baseline Stellar Interferometry, (SPIE Press Book, 1997).
  4. M. E. Testorf and M. A. Fiddy, “Superresolution imaging-revisited,” Adv. Imaging Electron Phys.163, 165–218 (2010). [CrossRef]
  5. S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, and T. J. Wright, “Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing,” Appl. Opt.44(35), 7621–7629 (2005). [CrossRef] [PubMed]
  6. V. Micó, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A23(12), 3162–3170 (2006). [CrossRef] [PubMed]
  7. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt.49(5), 845–857 (2010). [CrossRef] [PubMed]
  8. L. Martínez-León and B. Javidi, “Synthetic aperture single-exposure on-axis digital holography,” Opt. Express16(1), 161–169 (2008). [CrossRef] [PubMed]
  9. K. Ji, P. Gao, J. Min, R. Guo, and N. Menke, “A synthetic aperture telescope based on a pair of gratings,” J. Mod. Opt.60(15), 1229–1233 (2013). [CrossRef]
  10. G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, “Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms,” Appl. Opt.46(6), 993–1000 (2007). [CrossRef] [PubMed]
  11. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett.32(8), 912–914 (2007). [CrossRef] [PubMed]
  12. J. Rosen and G. Brooker, “Non-Scanning Motionless Fluorescence Three-Dimensional Holographic Microscopy,” Nat. Photonics2(3), 190–195 (2008). [CrossRef]
  13. P. Bouchal, J. Kapitán, R. Chmelík, and Z. Bouchal, “Point spread function and two-point resolution in Fresnel incoherent correlation holography,” Opt. Express19(16), 15603–15620 (2011). [CrossRef] [PubMed]
  14. J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express19(27), 26249–26268 (2011). [CrossRef] [PubMed]
  15. B. Katz, J. Rosen, R. Kelner, and G. Brooker, “Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM),” Opt. Express20(8), 9109–9121 (2012). [CrossRef] [PubMed]
  16. B. Katz and J. Rosen, “Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements,” Opt. Express18(2), 962–972 (2010). [CrossRef] [PubMed]
  17. B. Katz and J. Rosen, “Could SAFE concept be applied for designing a new synthetic aperture telescope?” Opt. Express19(6), 4924–4936 (2011). [CrossRef] [PubMed]
  18. G. Brooker, N. Siegel, V. Wang, and J. Rosen, “Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy,” Opt. Express19(6), 5047–5062 (2011). [CrossRef] [PubMed]
  19. J. W. Goodman, Introduction to Fourier optics, 3rd Ed., (Roberts and Company Publishers, 2005).
  20. X. Lai, S. Zeng, X. Lv, J. Yuan, and L. Fu, “Violation of the Lagrange invariant in an optical imaging system,” Opt. Lett.38(11), 1896–1898 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited