OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 17 — Aug. 25, 2014
  • pp: 20566–20573

Supercontinuum up-conversion via molecular modulation in gas-filled hollow-core PCF

S. T. Bauerschmidt, D. Novoa, B. M. Trabold, A. Abdolvand, and P. St.J. Russell  »View Author Affiliations

Optics Express, Vol. 22, Issue 17, pp. 20566-20573 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1430 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the efficient, tunable, and selective frequency up-conversion of a supercontinuum spectrum via molecular modulation in a hydrogen-filled hollow-core photonic crystal fiber. The vibrational Q(1) Raman transition of hydrogen is excited in the fiber by a pump pre-pulse, enabling the excitation of a synchronous, collective oscillation of the molecules. This coherence wave is then used to up-shift the frequency of an arbitrarily weak, delayed probe pulse. Perfect phase-matching for this process is achieved by using higher order fiber modes and adjusting the pressure of the filling gas. Conversion efficiencies of ~50% are obtained within a tuning range of 25 THz.

© 2014 Optical Society of America

OCIS Codes
(190.7220) Nonlinear optics : Upconversion
(290.5910) Scattering : Scattering, stimulated Raman
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics

Original Manuscript: June 5, 2014
Revised Manuscript: July 28, 2014
Manuscript Accepted: August 4, 2014
Published: August 18, 2014

S. T. Bauerschmidt, D. Novoa, B. M. Trabold, A. Abdolvand, and P. St.J. Russell, "Supercontinuum up-conversion via molecular modulation in gas-filled hollow-core PCF," Opt. Express 22, 20566-20573 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  2. P. Gibbon, “High-order harmonic generation in plasmas,” IEEE J. Quantum Electron.33(11), 1915–1924 (1997). [CrossRef]
  3. T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. L. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science336(6086), 1287–1291 (2012). [CrossRef] [PubMed]
  4. A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Raman generation by phased and antiphased molecular states,” Phys. Rev. Lett.85(3), 562–565 (2000). [CrossRef] [PubMed]
  5. A. Nazarkin, G. Korn, M. Wittmann, and T. Elsaesser, “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium,” Phys. Rev. Lett.83(13), 2560–2563 (1999). [CrossRef]
  6. J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Sideband generation using strongly driven Raman coherence in solid hydrogen,” Phys. Rev. Lett.85(12), 2474–2477 (2000). [CrossRef] [PubMed]
  7. J. J. Weber, J. T. Green, and D. D. Yavuz, “17 THz continuous-wave optical modulator,” Phys. Rev. A85(1), 013805 (2012). [CrossRef]
  8. D. D. Yavuz and J. J. Weber, “Tunable source of terahertz radiation using molecular modulation,” Opt. Lett.37(20), 4191–4193 (2012). [CrossRef] [PubMed]
  9. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002). [CrossRef] [PubMed]
  10. P. S. Donvalkar, V. Venkataraman, S. Clemmen, K. Saha, and A. L. Gaeta, “Frequency translation via four-wave mixing Bragg scattering in Rb filled photonic bandgap fibers,” Opt. Lett.39(6), 1557–1560 (2014). [CrossRef] [PubMed]
  11. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science318(5853), 1118–1121 (2007). [CrossRef] [PubMed]
  12. A. Abdolvand, A. M. Walser, M. Ziemienczuk, T. Nguyen, and P. St. J. Russell, “Generation of a phase-locked Raman frequency comb in gas-filled hollow-core photonic crystal fiber,” Opt. Lett.37(21), 4362–4364 (2012). [CrossRef] [PubMed]
  13. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B28, A11–A26 (2011). [CrossRef]
  14. M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. St. J. Russell, “Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” J. Opt. Soc. Am. B29(7), 1563–1568 (2012). [CrossRef]
  15. B. M. Trabold, A. Abdolvand, T. G. Euser, and P. St. J. Russell, “Efficient anti-Stokes generation via intermodal stimulated Raman scattering in gas-filled hollow-core PCF,” Opt. Express21(24), 29711–29718 (2013). [CrossRef] [PubMed]
  16. J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett.35(17), 2922–2924 (2010). [CrossRef] [PubMed]
  17. J. F. Reintjes, Handbook of Laser Science and Technology, Supplement 2: Optical Materials (CRC, 1995).
  18. M. A. Finger, N. Y. Joly, T. Weiss, and P. St. J. Russell, “Accuracy of the capillary approximation for gas-filled kagomé-style photonic crystal fibers,” Opt. Lett.39(4), 821–824 (2014). [CrossRef] [PubMed]
  19. E. R. Peck and S. Huang, “Refractivity and dispersion of hydrogen in the visible and near infrared,” J. Opt. Soc. Am.67(11), 1550–1554 (1977). [CrossRef]
  20. F. Couny, O. Carraz, and F. Benabid, “Control of transient regime of stimulated Raman scattering using hollow-core PCF,” J. Opt. Soc. Am. B26(6), 1209–1215 (2009). [CrossRef]
  21. S. O. Konorov, A. B. Fedotov, A. M. Zheltikov, and R. B. Miles, “Phase-matched four-wave mixing and sensing of water molecules by coherent anti-Stokes Raman scattering in large-core-area hollow photonic-crystal fibers,” J. Opt. Soc. Am. B22(9), 2049–2053 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited