OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 17 — Aug. 25, 2014
  • pp: 20705–20719

Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics

Dewen Cheng, Yongtian Wang, Chen Xu, Weitao Song, and Guofan Jin  »View Author Affiliations

Optics Express, Vol. 22, Issue 17, pp. 20705-20719 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2817 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Small thickness and light weight are two important requirements for a see-through near-eye display which are achieved in this paper by using two advanced technologies: geometrical waveguide and freeform optics. A major problem associated with the geometrical waveguide is the stray light which can severely degrade the display quality. The causes and solutions to this problem are thoroughly studied. A mathematical model of the waveguide is established and a non-sequential ray tracing algorithm is developed, which enable us to carefully examine the stray light of the planar waveguide and explore a global searching method to find an optimum design with the least amount of stray light. A projection optics using freeform surfaces on a wedge shaped prism is also designed. The near-eye display integrating the projection optics and the waveguide has a field of view of 28°, an exit pupil diameter of 9.6mm and an exit pupil distance of 20mm. In our final design, the proportion of the stray light energy over the image output energy of the waveguide is reduced to 2%, the modulation transfer function values across the entire field of the eyepiece are above 0.5 at 30 line pairs/mm (lps/mm). A proof-of-concept prototype of the proposed geometrical waveguide near-eye display is developed and demonstrated.

© 2014 Optical Society of America

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(120.2040) Instrumentation, measurement, and metrology : Displays
(220.4610) Optical design and fabrication : Optical fabrication
(350.4600) Other areas of optics : Optical engineering
(330.7321) Vision, color, and visual optics : Vision coupled optical systems

ToC Category:
Geometric Optics

Original Manuscript: May 22, 2014
Revised Manuscript: July 24, 2014
Manuscript Accepted: July 29, 2014
Published: August 19, 2014

Dewen Cheng, Yongtian Wang, Chen Xu, Weitao Song, and Guofan Jin, "Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics," Opt. Express 22, 20705-20719 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009). [CrossRef]
  2. http://www.sony.co.uk/hub/personal-3d-viewer .
  3. K. Aiki and S. Nakano, “Illumination optical device and virtual image display,” U. S. Patent 2010/0027289.
  4. H. Mukawa, “Head-mounted display,” U. S. Patent 2010/0046070.
  5. N. Owano, “Epson's 3-d glasses simulate 80-inch screen,” http://phys.org/news/2012-04-epson-d-glasses-simulate-inch.html .
  6. M. Takagi, T. Miyao, T. Totani, A. Komatsu, and T. Takeda, “Light guide plate and virtual image display apparatus having the same,” U. S. Patent 2012/0057253.
  7. P. Äyräs, P. Saarikko, and T. Levola, “Exit pupil expander with a large field of view based on diffractive optics,” J. Soc. Inf. Disp. 17(8), 659–664 (2009). [CrossRef]
  8. P. Saarikko, “Diffractive exit-pupil expander for spherical light guide virtual displays designed for near-distance viewing,” J. Opt. A, Pure Appl. Opt. 11(6), 065504 (2009). [CrossRef]
  9. T. Levola, “Simulation of planar lightguides in imaging applications using rigorous diffraction theory,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2009), Vol. 40, No. 1, pp. 35–37. [CrossRef]
  10. P. Saarikko, “Diffractive exit-pupil expander with a large field of view,” Proc. SPIE 7001, 700105 (2008). [CrossRef]
  11. B. Achtner, “HMD device with imaging optics comprising an aspheric surface,” U. S. Patent 6903875.
  12. M. Kaschke, “Technology introduction,” http://www.kaschke-medtec.de/vorlWS09.html .
  13. M. J. Heinrich and M. I. Olsson, “Wearable display device,” U. S. Patent D659741.
  14. B. Kress and T. Starner, “A review of head-mounted displays (HMD) technologies and applications for consumer electronics,” Proc. SPIE 8720, 87200A (2013). [CrossRef]
  15. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009). [CrossRef] [PubMed]
  16. S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003). [CrossRef]
  17. H. Urey, “Diffractive exit-pupil expander for display applications,” Appl. Opt. 40(32), 5840–5851 (2001). [CrossRef] [PubMed]
  18. T. Levola, “Novel diffractive optical components for near to eye displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2006), Vol. 37, No. 1, pp. 64–67. [CrossRef]
  19. T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006). [CrossRef]
  20. R. Shi, J. Liu, J. Xu, D. Liu, Y. Pan, J. Xie, and Y. Wang, “Designing and fabricating diffractive optical elements with a complex profile by interference,” Opt. Lett. 36(20), 4053–4055 (2011). [CrossRef] [PubMed]
  21. Y. Amitai, A. A. Friesem, and V. Weiss, “Holographic elements with high efficiency and low aberrations for helmet displays,” Appl. Opt. 28(16), 3405–3416 (1989). [CrossRef] [PubMed]
  22. Y. Amitai and J. W. Goodman, “Design of substrate-mode holographic interconnects with different recording and readout wavelengths,” Appl. Opt. 30(17), 2376–2381 (1991). [CrossRef] [PubMed]
  23. Q. Huang and H. J. Caulfield, “Waveguide holography and its applications,” Proc. SPIE 1461, 303–312 (1991). [CrossRef]
  24. M. M. Li, R. T. Chen, S. Tang, and D. Gerold, “Multiple diffraction of massive fanout optical interconnects based on multiplexed waveguide holograms,” Proc. SPIE 2153, 278–287 (1994). [CrossRef]
  25. Y. Amitai, S. Reinhorn, and A. A. Friesem, “Visor-display design based on planar holographic optics,” Appl. Opt. 34(8), 1352–1356 (1995). [CrossRef] [PubMed]
  26. M. D. Drake, M. L. Lidd, and M. A. Fiddy, “Waveguide hologram fingerprint entry device,” Opt. Eng. 35(9), 2499–2505 (1996). [CrossRef]
  27. J. A. Gilbert and Q. Huang, “Characterization, production and reconstruction of substrate guided wave holointerferograms,” Exp. Mech. 36(1), 71–77 (1996). [CrossRef]
  28. A. N. Putilin, Y. P. Borodin, and A. V. Chernopiatov, “Waveguide holograms in LCD illumination units,” Proc. SPIE 4511, 144–148 (2001). [CrossRef]
  29. A. Putilin and I. Gustomiasov, “Application of holographic elements in displays and planar illuminators,” Proc. SPIE 6637, 66370N (2007).
  30. C. Alex, “The application of holographic optical waveguide technology to Q-sight family of helmet mounted displays,” Proc. SPIE 7362, 73260H (2009).
  31. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2008), Vol. 39, No. 1, pp. 89–92. [CrossRef]
  32. Z. Yan, W. Li, Y. Zhou, M. Kang, and Z. Zheng, “Virtual display design using waveguide hologram in conical mounting configuration,” Opt. Eng. 50(9), 094001 (2011). [CrossRef]
  33. Y. Amitai and A. A. Friesem, “Design of holographic optical elements by using recursive techniques,” J. Opt. Soc. Am. A 5(5), 702–712 (1988). [CrossRef]
  34. Y. Amitai, “Extremely compact high-performance HMDs based on substrate-guided optical element,” in Society for Information Display (SID) International Symposium Digest (Society for Information Display, 2004), Vol. 35, No. 1, pp. 310–313. [CrossRef]
  35. Y. Amitai, “A two-dimensional aperture expander for ultra-compact, high-performance head-worn displays,” in SID International Symposium Digest of Technical Papers (Society for Information Display, 2005), Vol. 36, No. 1, pp. 360–363. [CrossRef]
  36. http://www.lumus-optical.com .
  37. Optinvent, Clear-vu optics, http://www.optinvent.com/clear-vu-optics.php .
  38. Q. Wang, D. Cheng, Y. Wang, H. Hua, and G. Jin, “Design, tolerance, and fabrication of an optical see-through head-mounted display with free-form surface elements,” Appl. Opt. 52(7), C88–C99 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited