OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 17 — Aug. 25, 2014
  • pp: 20856–20870

High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography

Siyuan Dong, Pariksheet Nanda, Radhika Shiradkar, Kaikai Guo, and Guoan Zheng  »View Author Affiliations


Optics Express, Vol. 22, Issue 17, pp. 20856-20870 (2014)
http://dx.doi.org/10.1364/OE.22.020856


View Full Text Article

Enhanced HTML    Acrobat PDF (6030 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fluorescence microscopy plays a vital role in modern biological research and clinical diagnosis. Here, we report an imaging approach, termed pattern-illuminated Fourier ptychography (FP), for fluorescence imaging beyond the diffraction limit of the employed optics. This approach iteratively recovers a high-resolution fluorescence image from many pattern-illuminated low-resolution intensity measurements. The recovery process starts with one low-resolution measurement as the initial guess. This initial guess is then sequentially updated by other measurements, both in the spatial and Fourier domains. In the spatial domain, we use the pattern-illuminated low-resolution images as intensity constraints for the sample estimate. In the Fourier domain, we use the incoherent optical-transfer-function of the objective lens as the object support constraint for the solution. The sequential updating process is then repeated until the sample estimate converges, typically for 5-20 times. Different from the conventional structured illumination microscopy, any unknown pattern can be used for sample illumination in the reported framework. In particular, we are able to recover both the high-resolution sample image and the unknown illumination pattern at the same time. As a demonstration, we improved the resolution of a conventional fluorescence microscope beyond the diffraction limit of the employed optics. The reported approach may provide an alternative solution for structure illumination microscopy and find applications in wide-field, high-resolution fluorescence imaging.

© 2014 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3010) Medical optics and biotechnology : Image reconstruction techniques

ToC Category:
Image Processing

History
Original Manuscript: May 8, 2014
Revised Manuscript: June 27, 2014
Manuscript Accepted: August 4, 2014
Published: August 21, 2014

Virtual Issues
Vol. 9, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Siyuan Dong, Pariksheet Nanda, Radhika Shiradkar, Kaikai Guo, and Guoan Zheng, "High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography," Opt. Express 22, 20856-20870 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-17-20856


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2010).
  2. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000). [CrossRef] [PubMed]
  3. M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086 (2005). [CrossRef] [PubMed]
  4. M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J.94(12), 4957–4970 (2008). [CrossRef] [PubMed]
  5. R. Heintzmann and M. G. Gustafsson, “Subdiffraction resolution in continuous samples,” Nat. Photonics3(7), 362–364 (2009). [CrossRef]
  6. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods6(5), 339–342 (2009). [CrossRef] [PubMed]
  7. E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics6(5), 312–315 (2012). [CrossRef]
  8. A. Jost and R. Heintzmann, “Superresolution multidimensional imaging with structured illumination microscopy,” Annu. Rev. Mater. Res.43(1), 261–282 (2013). [CrossRef]
  9. J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep.3, 2075 (2013).
  10. P. T. C. So, H.-S. Kwon, and C. Y. Dong, “Resolution enhancement in standing-wave total internal reflection microscopy: a point-spread-function engineering approach,” J. Opt. Soc. Am. A18(11), 2833–2845 (2001). [CrossRef] [PubMed]
  11. J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express13(16), 6073–6078 (2005). [CrossRef] [PubMed]
  12. A. Gur, D. Fixler, V. Micó, J. Garcia, and Z. Zalevsky, “Linear optics based nanoscopy,” Opt. Express18(21), 22222–22231 (2010). [CrossRef] [PubMed]
  13. C. Ventalon and J. Mertz, “Quasi-confocal fluorescence sectioning with dynamic speckle illumination,” Opt. Lett.30(24), 3350–3352 (2005). [CrossRef] [PubMed]
  14. C. Ventalon and J. Mertz, “Dynamic speckle illumination microscopy with translated versus randomized speckle patterns,” Opt. Express14(16), 7198–7209 (2006). [CrossRef] [PubMed]
  15. C. Ventalon, R. Heintzmann, and J. Mertz, “Dynamic speckle illumination microscopy with wavelet prefiltering,” Opt. Lett.32(11), 1417–1419 (2007). [CrossRef] [PubMed]
  16. Z. R. Hoffman and C. A. DiMarzio, “Structured illumination microscopy using random intensity incoherent reflectance,” J. Biomed. Opt.18(6), 061216 (2013). [CrossRef] [PubMed]
  17. M. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997). [CrossRef] [PubMed]
  18. J. G. Walker and K. I. Hopcraft, “A diffuser-based optical sectioning fluorescence microscope,” Meas. Sci. Technol.24(12), 125404 (2013). [CrossRef]
  19. D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, and Y. Yang, “DMD-based LED-illumination Super-resolution and optical sectioning microscopy,” Sci. Rep.3, 1116 (2013).
  20. K. Wicker, “Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in Fourier space,” Opt. Express21(21), 24692–24701 (2013). [CrossRef] [PubMed]
  21. R. Ayuk, H. Giovannini, A. Jost, E. Mudry, J. Girard, T. Mangeat, N. Sandeau, R. Heintzmann, K. Wicker, K. Belkebir, and A. Sentenac, “Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm,” Opt. Lett.38(22), 4723–4726 (2013). [CrossRef] [PubMed]
  22. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics7(9), 739–745 (2013). [CrossRef]
  23. X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett.38(22), 4845–4848 (2013). [CrossRef] [PubMed]
  24. S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, and G. Zheng, “Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express22(11), 13586–13599 (2014). [CrossRef] [PubMed]
  25. S. Dong, R. Shiradkar, P. Nanda, and G. Zheng, “Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging,” Biomed. Opt. Express5(6), 1757–1767 (2014). [CrossRef] [PubMed]
  26. G. Zheng, “Breakthroughs in photonics 2013: Fourier ptychographic imaging,” Photonics Journal, IEEE6, 1–7 (2014). [CrossRef]
  27. G. Zheng, X. Ou, R. Horstmeyer, J. Chung, and C. Yang, “Fourier ptychographic microscopy: a gigapixel superscope for biomedicine,” Optics and Photonics News25(4April Issue), 26–33 (2014). [CrossRef]
  28. A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt.19(6), 066007 (2014). [CrossRef] [PubMed]
  29. R. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.)35, 237 (1972).
  30. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett.3(1), 27–29 (1978). [CrossRef] [PubMed]
  31. L. Taylor, “The phase retrieval problem,” Antennas and Propagation, IEEE Transactions on29(2), 386–391 (1981). [CrossRef]
  32. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt.21(15), 2758–2769 (1982). [CrossRef] [PubMed]
  33. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng.21(5), 215829 (1982). [CrossRef]
  34. B. H. Dean and C. W. Bowers, “Diversity selection for phase-diverse phase retrieval,” J. Opt. Soc. Am. A20(8), 1490–1504 (2003). [CrossRef] [PubMed]
  35. C.-H. Lu, C. Barsi, M. O. Williams, J. N. Kutz, and J. W. Fleischer, “Phase retrieval using nonlinear diversity,” Appl. Opt.52(10), D92–D96 (2013). [CrossRef] [PubMed]
  36. H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett.93(2), 023903 (2004). [CrossRef] [PubMed]
  37. M. Guizar-Sicairos and J. R. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express16(10), 7264–7278 (2008). [CrossRef] [PubMed]
  38. X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express22(5), 4960–4972 (2014). [CrossRef] [PubMed]
  39. P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy109(4), 338–343 (2009). [CrossRef] [PubMed]
  40. F. Hüe, J. M. Rodenburg, A. M. Maiden, and P. A. Midgley, “Extended ptychography in the transmission electron microscope: Possibilities and limitations,” Ultramicroscopy111(8), 1117–1123 (2011). [CrossRef] [PubMed]
  41. Z. Bian, S. Dong, and G. Zheng, “Adaptive system correction for robust Fourier ptychographic imaging,” Opt. Express21(26), 32400–32410 (2013). [CrossRef] [PubMed]
  42. S. Dong, Z. Bian, R. Shiradkar, and G. Zheng, “Sparsely sampled Fourier ptychography,” Opt. Express22(5), 5455–5464 (2014). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited