OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 17 — Aug. 25, 2014
  • pp: 21037–21050

Sub-wavelength grating components for integrated optics applications on SOI chips

Valentina Donzella, Ahmed Sherwali, Jonas Flueckiger, Sahba Talebi, Fard, Samantha M. Grist, and Lukas Chrostowski  »View Author Affiliations


Optics Express, Vol. 22, Issue 17, pp. 21037-21050 (2014)
http://dx.doi.org/10.1364/OE.22.021037


View Full Text Article

Enhanced HTML    Acrobat PDF (1808 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we demonstrate silicon on insulator (SOI) sub-wavelength grating (SWG) optical components for integrated optics and sensing. Light propagation in SWG devices is studied and realized with no cladding on top of the waveguide. In particular, we focused on SWG bends, tapers and directional couplers, all realized with compatible geometries in order to be used as building blocks for more complex integrated optics devices (interferometers, switches, resonators, etc.). Fabricated SWG tapers for TE and TM polarizations are described; they allow for connecting SWG devices to regular strip waveguides with loss lower than 1 dB per taper. Our SWG directional coupler presents a very compact design and a negligible wavelength dependence of its crossover length (and as a consequence of its coupling coefficient, κ), over a 40 nm bandwidth. This wavelength flatten response represents a bandwidth enhancement with respect to standard directional couplers (made using strip or rib waveguides), in particular for the TE mode. SWG bends are demonstrated, their loss dependence on radius is analyzed, and fabricated bends have a loss in the range 0.8-1.6 dB per 90 degrees bend. Simulated and measured results show promise for large-scale fabrication of complex optical devices and high sensitivity sensors based on SWG waveguides with engineered optical properties, tailored to specific applications.

© 2014 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.3120) Optical devices : Integrated optics devices
(230.3990) Optical devices : Micro-optical devices
(230.7370) Optical devices : Waveguides
(350.2770) Other areas of optics : Gratings

ToC Category:
Integrated Optics

History
Original Manuscript: July 1, 2014
Revised Manuscript: August 7, 2014
Manuscript Accepted: August 14, 2014
Published: August 22, 2014

Citation
Valentina Donzella, Ahmed Sherwali, Jonas Flueckiger, Sahba Talebi Fard, Samantha M. Grist, and Lukas Chrostowski, "Sub-wavelength grating components for integrated optics applications on SOI chips," Opt. Express 22, 21037-21050 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-17-21037


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Hochberg, N. C. Harris, D. Ran, Z. Yi, A. Novack, X. Zhe, and T. Baehr-Jones, “Silicon photonics: the next fabless semiconductor industry,” IEEE Solid-State Circ. Mag.5(1), 48–58 (2013).
  2. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006). [CrossRef]
  3. L. Chrostowski and M. Hochberg, Silicon Photonics Design (Cambridge University Press, 2014)
  4. S. Selvaraja, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, D. Vermeulen, G. Sterckx, G.Winroth, P. Verheyen, G. Lepage, W. Bogaerts, R. Baets, J. Van Campenhout and P. Absil, “Advanced 300-mm waferscale patterning for silicon photonics devices with record low loss and phase errors,” 17th Opto-Electronics and Communications Conference-OECC, PDP2–2, (2012).
  5. Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Y. Yang, Y. Ma, Y. Zhang, A. Lim, T. Y. Liow, S. Teo, G. Q. Lo, and M. Hochberg, “30GHz silicon platform for photonics system,” IEEE Optical Interconnects Conference (2013).
  6. B. Jalali and S. Fathpour, “Silicon photonics,” IEEE J. Lightw. Tech.24(12), 4600–4615 (2006). [CrossRef]
  7. R. Soref, “Silicon photonics: a review of recent literature,” Silicon.2(1), 1–6 (2010). [CrossRef]
  8. S. Talebifard, S. M. Grist, V. Donzella, S. A. Schmidt, J. Flueckiger, X. Wang, W. Shi, A. Millspaugh, M. Webb, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Label-free silicon photonic biosensors for use in clinical diagnostics,” SPIE OPTO 862909 (2014).
  9. S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express21(7), 7994–8006 (2013). [CrossRef] [PubMed]
  10. V. Donzella, S. Talebi Fard, and L. Chrostowski, “Modelling of asymmetric slot racetracks for improved bio-sensors performance,” Numerical Simulation of Optoelectronic Devices (NUSOD), 2013 13th International Conference on pp.25,26 (2013).
  11. X. Wang, J. Flueckiger, S. Schmidt, S. Grist, S. T. Fard, J. Kirk, M. Doerfler, K. C. Cheung, D. M. Ratner, and L. Chrostowski, “A silicon photonic biosensor using phase-shifted Bragg gratings in slot waveguide,” J Biophotonics6(10), 821–828 (2013). [PubMed]
  12. S. Talebifard, V. Donzella, S. A. Schmidt, D. M. Ratner, R. J. Bojko, and L. Chrostowski, “Sensitivity analysis of thin waveguide SOI ring resonators for sensing applications,” IEEE Photonics Conference (IPC) pp.616–617, (2013).
  13. J. H. E. Kim, L. Chrostowski, E. Bisaillon, and D. V. Plant, “DBR, Sub-wavelength grating, and photonic crystal slab Fabry-Perot cavity design using phase analysis by FDTD,” Opt. Express15(16), 10330–10339 (2007). [CrossRef] [PubMed]
  14. D. Nir, Z. Weissman, S. Ruschin, and A. Hardy, “Periodically segmented waveguides in Ti:LiNbO3,” Opt. Lett.19(12), 880–882 (1994). [CrossRef] [PubMed]
  15. K. Thyagarajan, C. W. Chien, R. V. Ramaswamy, H. S. Kim, and H. C. Cheng, “Proton-exchange periodically segmented waveguides in LiNbO3,” Opt. Lett.19(12), 880 (1994). [CrossRef] [PubMed]
  16. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D. X. Xu, S. Janz, A. Densmore, T. J. Hall, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express18(15), 16146–16155 (2010). [CrossRef] [PubMed]
  17. X. Wang, S. Grist, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Silicon photonic slot waveguide Bragg gratings and resonators,” Opt. Express21(16), 19029–19039 (2013). [CrossRef] [PubMed]
  18. R. Halir, A. Maese-Novo, A. Ortega-Moñux, I. Molina-Fernández, J. G. Wangüemert-Pérez, P. Cheben, D.-X. Xu, J. H. Schmid, and S. Janz, “Colorless directional coupler with dispersion engineered sub-wavelength structure,” Opt. Express20(12), 13470–13477 (2012). [CrossRef] [PubMed]
  19. P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D. X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett.35(15), 2526–2528 (2010). [CrossRef] [PubMed]
  20. X. Wang, Y. Wang, J. Flueckiger, R Bojko, A. Liu, A. Reid, J. Pond, N.A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” submitted.
  21. D. Ortega, J. M. Aldariz, J. M. Arnold, and J. S. Aitchison, “Analysis of “quasi-modes” in periodic segmented waveguides,” J. Lightw. Tech.17(2), 369–375 (1999). [CrossRef]
  22. S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. Talebi Fard, Y. Wu, R. J. Bojko, E. Kwok, N. A. Jaeger, D. M. Ratner, and L. Chrostowski, “Performance of ultra-thin SOI-based resonators for sensing applications,” Opt. Express22(12), 14166–14179 (2014). [CrossRef] [PubMed]
  23. www.lumerical.com
  24. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” IEEE J Lightw. Tech.15(8), 1263–1276 (1997).
  25. Y. Chen, J. Feng, Z. Zhou, C. J. Summers, D. S. Citrin, and J. Yu, “Simple technique to fabricate microscale and nanoscale silicon waveguide devices,” Front. Optoelectron. China2(3), 308–311 (2009). [CrossRef]
  26. R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol. B29(6), 06F309 (2011). [CrossRef]
  27. Y. Wang, J. Flueckiger, C. Lin, and L. Chrostowski, “Fully-etched grating coupler with low back reflection,” SPIE Photonics North 89150U (2013).
  28. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett.33(2), 147–149 (2008). [CrossRef] [PubMed]
  29. D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett.35(16), 2771–2773 (2010). [CrossRef] [PubMed]
  30. T. Lee, D. Lee, and Y. Chung, “Design and simulation of fabrication-error-tolerant triplexer based on cascaded Mach–Zehnder inteferometers,” IEEE Photon. Technol. Lett.20(1), 33–35 (2008). [CrossRef]
  31. M. Thorhauge, L. H. Frandsen, and P. I. Borel, “Efficient photonic crystal directional couplers,” Opt. Lett.28(17), 1525–1527 (2003). [CrossRef] [PubMed]
  32. V. Donzella, S. Talebi Fard, and L. Chrostowski, “Study of waveguide crosstalk in silicon photonics integrated circuits,” Proc. SPIE 8915, Photonics North2013, 89150Z (2013).
  33. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express15(17), 10553–10561 (2007). [CrossRef] [PubMed]
  34. L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. Talebi Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” Optical Fiber Communication Conference, pp. Th2A.37 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited