OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 18 — Sep. 8, 2014
  • pp: 21167–21174

Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength

Dengkuan Liu, Shigehito Miki, Taro Yamashita, Lixing You, Zhen Wang, and Hirotaka Terai  »View Author Affiliations

Optics Express, Vol. 22, Issue 18, pp. 21167-21174 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (856 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the development of the multimode fiber-coupled superconducting nanowire single-photon detector with high system detection efficiency at visible wavelength. The detector consists of a 10.5-nm-thick and 150-nm-wide NbN nanowire meander fabricated on a Si substrate with a multilayer dielectric mirror and a quarter wavelength cavity for obtaining high optical absorptance. The meander area was 35 µm in diameter and coupled with the GRIN-lensed multimode optical fiber with a core diameter of 50 µm. The system reached detection efficiency of 70% with dark count rate of 100 Hz at the wavelength of 635 nm, 3 dB roll-off response counting rate of 8.5 Mcps, and timing jitter of 76 ps.

© 2014 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(270.5570) Quantum optics : Quantum detectors

ToC Category:

Original Manuscript: June 25, 2014
Revised Manuscript: August 7, 2014
Manuscript Accepted: August 12, 2014
Published: August 25, 2014

Dengkuan Liu, Shigehito Miki, Taro Yamashita, Lixing You, Zhen Wang, and Hirotaka Terai, "Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength," Opt. Express 22, 21167-21174 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001). [CrossRef]
  2. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J. B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express19(11), 10387–10409 (2011). [CrossRef] [PubMed]
  3. M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. Devoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in 2011International Conference on Space Optical Systems and Applications, pp. 78–82.
  4. S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system,” Appl. Opt.52(14), 3241–3245 (2013). [CrossRef] [PubMed]
  5. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express21(8), 10208–10214 (2013). [CrossRef] [PubMed]
  6. T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express21(22), 27177–27184 (2013). [CrossRef] [PubMed]
  7. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics7(3), 210–214 (2013). [CrossRef]
  8. D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express21(2), 1440–1447 (2013). [CrossRef] [PubMed]
  9. R. Ikuta, T. Kobayashi, S. Yasui, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Frequency down-conversion of 637 nm light to the telecommunication band for non-classical light emitted from NV centers in diamond,” Opt. Express22(9), 11205–11214 (2014). [CrossRef] [PubMed]
  10. R.-B. Jin, R. Shimizu, K. Wakui, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength,” Opt. Express22(10), 11498–11507 (2014). [CrossRef] [PubMed]
  11. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited Review Article: Single-photon sources and detectors,” Rev. Sci. Instrum.82(7), 071101 (2011). [CrossRef] [PubMed]
  12. J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2006).
  13. L. Combrinck, Sciences of Geodesy-I (Springer Berlin Heidelberg, 2010), pp. 301–338.
  14. R. Rigler and E. S. Elson, eds., Fluorescence Correlation Spectroscopy: Theory and Applications (Springer, 2001).
  15. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express14(2), 527–534 (2006). [CrossRef] [PubMed]
  16. B. Baek, J. A. Stern, and S. W. Nam, “Superconducting nanowire single-photon detector in an optical cavity for front-side illumination,” Appl. Phys. Lett.95(19), 191110 (2009). [CrossRef]
  17. J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B84(17), 174510 (2011). [CrossRef]
  18. X. L. Hu, T. Zhong, J. E. White, E. A. Dauler, F. Najafi, C. H. Herder, F. N. C. Wong, and K. K. Berggren, “Fiber-coupled nanowire photon counter at 1550 nm with 24% system detection efficiency,” Opt. Lett.34(23), 3607–3609 (2009). [CrossRef] [PubMed]
  19. L. You, X. Yang, Y. He, W. Zhang, D. Liu, W. Zhang, L. Zhang, L. Zhang, X. Liu, S. Chen, Z. Wang, and X. Xie, “Jitter analysis of a superconducting nanowire single photon detector,” AIP Advances3(7), 072135 (2013). [CrossRef]
  20. S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, “Development of SNSPD system with Gifford-McMahon cryocooler,” IEEE Trans. Appl. Supercond.19(3), 332–335 (2009). [CrossRef]
  21. M. Fujiwara, A. Tanaka, S. Takahashi, K. Yoshino, Y. Nambu, A. Tajima, S. Miki, T. Yamashita, Z. Wang, A. Tomita, and M. Sasaki, “Afterpulse-like phenomenon of superconducting single photon detector in high speed quantum key distribution system,” Opt. Express19(20), 19562–19571 (2011). [CrossRef] [PubMed]
  22. T. Yamashita, S. Miki, W. Qiu, M. Fujiwara, M. Sasaki, and Z. Wang, “Temperature Dependent Performances of Superconducting Nanowire Single-Photon Detectors in an Ultralow-Temperature Region,” Appl. Phys. Express3(10), 102502 (2010). [CrossRef]
  23. H. Shibata, K. Shimizu, H. Takesue, and Y. Tokura, “Superconducting Nanowire Single-Photon Detector with Ultralow Dark Count Rate Using Cold Optical Filters,” Appl. Phys. Express6(7), 072801 (2013). [CrossRef]
  24. X. Yang, H. Li, W. Zhang, L. You, L. Zhang, X. Liu, Z. Wang, W. Peng, X. Xie, and M. Jiang, “Superconducting nanowire single photon detector with on-chip bandpass filter,” Opt. Express22(13), 16267–16272 (2014). [CrossRef] [PubMed]
  25. J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17(2), 581–585 (2007). [CrossRef]
  26. S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A. J. Miller, R. H. Hadfield, S. W. Nam, and Z. Wang, “Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates,” Appl. Phys. Lett.92(6), 061116 (2008). [CrossRef]
  27. Q. Zhao, T. Jia, M. Gu, C. Wan, L. Zhang, W. Xu, L. Kang, J. Chen, and P. Wu, “Counting rate enhancements in superconducting nanowire single-photon detectors with improved readout circuits,” Opt. Lett.39(7), 1869–1872 (2014). [CrossRef] [PubMed]
  28. A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys.113(14), 144511 (2013). [CrossRef]
  29. W. Slysz, M. Wegrzecki, J. Bar, P. Grabiec, M. Gorska, E. Reiger, S. Dorenbos, V. Zwiller, I. Milostnaya, O. Minaeva, A. Antipov, O. Okunev, A. Korneev, K. Smirnov, B. Voronov, N. Kaurova, G. N. Gol'tsman, J. Kitaygorsky, D. Pan, A. Pearlmann, A. Cross, I. Komissarov, and R. Sobolewski, “Fiber-coupled NbN superconducting single-photon detectors for quantum correlation measurements,” Photon Counting Applications, Quantum Optics, and Quantum Cryptography 6583 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited