OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 18 — Sep. 8, 2014
  • pp: 21690–21700

Mode-locking and frequency mixing at THz pulse repetition rates in a sampled-grating DBR mode-locked laser

Lianping Hou, Mohsin Haji, and John H. Marsh  »View Author Affiliations


Optics Express, Vol. 22, Issue 18, pp. 21690-21700 (2014)
http://dx.doi.org/10.1364/OE.22.021690


View Full Text Article

Enhanced HTML    Acrobat PDF (2822 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a sampled grating distributed Bragg reflector (SGDBR) laser with two different gratings which mode-lock independently at respective pulse repetition frequencies of 640 and 700 GHz. The device operates in distinct regimes depending on the bias conditions, with stable pulse trains observed at 640 GHz, 700 GHz, the mean repetition frequency of 666 GHz, and the sum frequency of 1.34 THz (due to nonlinear mixing). Performance is consistent and highly reproducible with exceptional stability observed over wide ranges of drive bias conditions. Furthermore, a monolithically integrated semiconductor optical amplifier is used to amplify the pulse trains, providing an average output power of 46 mW at 666 GHz.

© 2014 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(230.1480) Optical devices : Bragg reflectors
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(320.7090) Ultrafast optics : Ultrafast lasers
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 6, 2014
Revised Manuscript: August 20, 2014
Manuscript Accepted: August 21, 2014
Published: August 29, 2014

Citation
Lianping Hou, Mohsin Haji, and John H. Marsh, "Mode-locking and frequency mixing at THz pulse repetition rates in a sampled-grating DBR mode-locked laser," Opt. Express 22, 21690-21700 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-18-21690


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. L. Portnoi and A. V. Chelnokov, “Passive mode-locking in a short cavity laser,” in Dig. 12th IEEE Semiconductor Conf., Davos, Switzerland, 140–141 (1990). [CrossRef]
  2. Y. Wen, D. Novak, H. Liu, and A. Nirmalathus, “Generation of 140GHz optical pulses with suppressed amplitude modulation by subharmonic synchronous mode locking of Fabry-Perot semiconductor laser,” Electron. Lett.37(9), 581–582 (2001). [CrossRef]
  3. T. Shimizu, I. Ogura, and H. Yokoyama, “860 GHz rate asymmetric colliding pulse mode locked diode lasers,” Electron. Lett.33(22), 1868–1869 (1997). [CrossRef]
  4. S. Arahira, Y. Matsui, and Y. Ogawa, “Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes,” IEEE J. Quantum Electron.32(7), 1211–1224 (1996). [CrossRef]
  5. D. A. Yanson, M. W. Street, S. D. McDougall, I. G. Thayne, J. H. Marsh, and E. A. Avrutin, “Ultrafast Harmonic Mode-Locking of Monolithic Compound-Cavity Laser Diodes Incorporating Photonic-Bandgap Reflectors,” IEEE J. Quantum Electron.38(1), 1–11 (2002). [CrossRef]
  6. L. Hou, R. Dylewicz, M. Haji, P. Stolarz, B. Qiu, and A. C. Bryce, “Monolithic 40 GHz passively mode-locked AlGaInAs/InP 1.55 μm MQW laser with surface-etched distributed Bragg reflector,” IEEE Photon. Technol. Lett.22(20), 1503–1505 (2010). [CrossRef]
  7. M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron.32(4/5), 503–520 (2000). [CrossRef]
  8. Z. Yang, L. Mutter, M. Stillhart, B. Ruiz, S. Aravazhi, M. Jazbinsek, A. Schneider, V. Gramlich, and P. Günter, “Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation,” Adv. Funct. Mater.17(13), 2018–2023 (2007). [CrossRef]
  9. L. Hou, P. Stolarz, J. Javaloyes, R. Green, C. N. Ironside, M. Sorel, and A. C. Bryce, “Subpicosecond pulse generation at quasi-40-GHz using a passively mode locked AlGaInAs/InP 1.55 μm strained quantum well laser,” IEEE Photon. Technol. Lett.21(23), 1731–1733 (2009). [CrossRef]
  10. V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sample gratings,” IEEE J. Quantum Electron.29(6), 1824–1834 (1993). [CrossRef]
  11. B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys.46(3), 1299–1305 (1975). [CrossRef]
  12. M. C. Aman and J. Buus, “Tunable semiconductor lasers,” Astech House, Norwood, MA, 1998.
  13. L. Hou, M. Haji, J. Akbar, and J. H. Marsh, “Narrow linewidth laterally-coupled 1.55μm AlGaInAs_InP DFB laser integrated with a curved tapered SOA,” Opt. Lett.37(21), 4525–4527 (2012). [CrossRef] [PubMed]
  14. J. Fricke, H. Wenzel, M. Matalla, A. Klehr, and G. Erbert, “980-nm DBR lasers using higher order gratings defined by i-line lithography,” Semicond. Sci. Technol.20(11), 1149–1152 (2005). [CrossRef]
  15. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifier,” IEEE J. Quantum Electron.25(11), 2297–2306 (1989). [CrossRef]
  16. S. Spiessberger, M. Schiemangk, A. Wicht, H. Wenzel, O. Brox, and G. Erbert, “Narrow linewidth DFB lasers emitting near a wavelength of 1064 nm,” J. Lightwave Technol.28(17), 2611–2616 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited