OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1267–1276

Aerostatically tunable optomechanical oscillators

Kewen Han, Jun Hwan Kim, and Gaurav Bahl  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1267-1276 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1936 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recently, the first microfluidic optomechanical device was demonstrated, capable of operating with non-solid states of matter (viscous fluids, bioanalytes). These devices exhibit optomechanical oscillation in both the 10–20 MHz and 10–12 GHz regimes, driven by radiation pressure (RP) and stimulated Brillouin scattering (SBS) respectively. In this work, we experimentally investigate aerostatic tuning of these hollow-shell oscillators, enabled by geometry, stress, and temperature effects. We also demonstrate for the first time the simultaneous actuation of RP-induced breathing mechanical modes and SBS-induced whispering gallery acoustic modes, through a single pump laser. Our result is a step towards completely self-referenced optomechanical sensor technologies.

© 2014 Optical Society of America

OCIS Codes
(290.5830) Scattering : Scattering, Brillouin
(140.3945) Lasers and laser optics : Microcavities
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Optical Devices

Original Manuscript: October 31, 2013
Revised Manuscript: December 20, 2013
Manuscript Accepted: January 6, 2014
Published: January 13, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Kewen Han, Jun Hwan Kim, and Gaurav Bahl, "Aerostatically tunable optomechanical oscillators," Opt. Express 22, 1267-1276 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Mertz, O. Marti, J. Mlynek, “Regulation of a microcantilever response by force feedback,” Appl. Phys. Lett. 62, 2344–2346 (1993). [CrossRef]
  2. C. Metzger, K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004). [CrossRef] [PubMed]
  3. C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008). [CrossRef] [PubMed]
  4. T. Carmon, H. Rokhsari, L. Yang, T. Kippenberg, K. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005). [CrossRef] [PubMed]
  5. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006). [CrossRef] [PubMed]
  6. S. Gigan, H. Bohm, M. Paternostro, F. Blaser, G. Langer, J. Hertzberg, K. Schwab, D. Bauerle, M. Aspelmeyer, A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006). [CrossRef] [PubMed]
  7. D. Kleckner, D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006). [CrossRef] [PubMed]
  8. J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, J. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008). [CrossRef] [PubMed]
  9. J. Chan, T. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011). [CrossRef] [PubMed]
  10. R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. Kippenberg, “Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state,” Phys. Rev. A 83, 063835 (2011). [CrossRef]
  11. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005). [CrossRef] [PubMed]
  12. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008). [CrossRef] [PubMed]
  13. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009). [CrossRef] [PubMed]
  14. Q. Lin, J. Rosenberg, X. Jiang, K. Vahala, O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009). [CrossRef] [PubMed]
  15. I. S. Grudinin, A. B. Matsko, L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009). [CrossRef]
  16. M. Tomes, T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett. 102, 113601 (2009). [CrossRef] [PubMed]
  17. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, L. Maleki, “Surface acoustic wave opto-mechanical oscillator and frequency comb generator,” Opt. Lett. 36, 3338–3340 (2011). [CrossRef] [PubMed]
  18. G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403 (2011). [CrossRef] [PubMed]
  19. G. Bahl, M. Tomes, F. Marquardt, T. Carmon, “Observation of spontaneous Brillouin cooling,” Nat. Phys. 8, 203–207 (2012). [CrossRef]
  20. P. Rakich, C. Reinke, R. Camacho, P. Davids, Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
  21. G. Bahl, K. H. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, “Brillouin cavity optomechanics with microfluidic devices,” Nat. Commun. 4, 1994 (2013). [CrossRef] [PubMed]
  22. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). [CrossRef] [PubMed]
  23. C. Dong, V. Fiore, M. C. Kuzyk, H. Wang, “Transient optomechanically induced transparency in a silica microsphere,” Phys. Rev. A 87, 055802 (2013). [CrossRef]
  24. C. Dong, V. Fiore, M. C. Kuzyk, H. Wang, “Optomechanical dark mode,” Science 338, 1609–1613 (2012). [CrossRef] [PubMed]
  25. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012). [CrossRef]
  26. D. N. Hutchison, S. A. Bhave, “Z-axis optomechanical accelerometer,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems (IEEE, New York, 2012), pp. 615–619.
  27. F. Liu, M. Hossein-Zadeh, “Mass sensing with optomechanical oscillation,” IEEE Sensors J. 13, 146–147 (2013). [CrossRef]
  28. F. Liu, M. Hossein-Zadeh, “On the spectrum of radiation pressure driven optomechanical oscillator and its application in sensing,” Opt. Commun. 294, 338–343 (2013). [CrossRef]
  29. E. Gavartin, P. Verlot, T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7, 509–514 (2012). [CrossRef] [PubMed]
  30. Y. Liu, H. Miao, V. Aksyuk, K. Srinivasan, “Integrated cavity optomechanical sensors for atomic force microscopy,” in Proceedings of IEEE Conference on Microsystems for Measurement and Instrumentation (IEEE, New York, 2012).
  31. K. H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” to appear in Light Sci. Appl. (2013), arXiv.org:1205.5477.
  32. M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, M. Lipson, “Synchronization of micromechanical oscillators using light,” Phys. Rev. Lett. 109, 233906 (2012). [CrossRef]
  33. J. Rosenberg, Q. Lin, O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478–483 (2009). [CrossRef]
  34. G. Bahl, J. Zehnpfennig, M. Tomes, T. Carmon, “Characterization of surface acoustic wave optomechanical oscillators,” in Proceedings of IEEE Conference on Frequency Control and the European Frequency and Time Forum (IEEE, New York, 2011).
  35. A. Watkins, J. Ward, Y. Wu, S. Nic Chormaic, “Single-input spherical microbubble resonator,” Opt. Lett. 36, 2113–2115 (2011). [CrossRef] [PubMed]
  36. R. Henze, T. Seifert, J. Ward, O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett. 36, 4536–4538 (2011). [CrossRef] [PubMed]
  37. S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15, 15523–15530 (2007). [CrossRef] [PubMed]
  38. X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, A. Q. Liu, “A nano-opto-mechanical pressure sensor via ring resonator,” Opt. Express 20, 8535–8542 (2012). [CrossRef] [PubMed]
  39. R. Madugani, Y. Yang, J. M. Ward, J. D. Riordan, S. Coppola, V. Vespini, S. Grilli, A. Finizio, P. Ferraro, S. Nic Chormaic, “Terahertz tuning of whispering gallery modes in a PDMS stand-alone, stretchable microsphere,” Opt. Lett. 37, 4762–4764 (2012). [CrossRef] [PubMed]
  40. K. Han, K. H. Kim, J. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, G. Bahl, “Fabrication and testing of microfluidic optomechanical oscillators,” J. Vis. Exp., in review (2013).
  41. W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99, 091102 (2011). [CrossRef]
  42. M. N. M. Nasir, M. Ding, G. S. Murugan, M. N. Zervas, “Microtaper fiber excitation effects in bottle microresonators,” Proc. SPIE LASE 8600, 860020 (2013). [CrossRef]
  43. J. C. Knight, G. Cheung, F. Jacques, T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997). [CrossRef] [PubMed]
  44. T. Carmon, L. Yang, K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004). [CrossRef] [PubMed]
  45. G. Bahl, X. Fan, T. Carmon, “Acoustic whispering-gallery modes in optomechanical shells,” New J. Phys. 14, 115026 (2012). [CrossRef]
  46. H. Rokhsari, T. Kippenberg, T. Carmon, K. Vahala, “Radiation-pressure-driven micro-mechanical oscillator,” Opt. Express 13, 5293–5301 (2005). [CrossRef] [PubMed]
  47. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005). [CrossRef] [PubMed]
  48. R. Chiao, C. Townes, B. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592–595 (1964). [CrossRef]
  49. Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787–A1805 (1965). [CrossRef]
  50. R. Boyd, “Stimulated Brillouin and stimulated Rayleigh scattering,” in Nonlinear Optics (Academic, 1992).
  51. G. Bahl, T. Carmon, “Brillouin optomechanics” (2013), arxiv.org:1309.2828.
  52. H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013). [CrossRef] [PubMed]
  53. S. Timoshenko, D. H. Young, W. Weaver, “Beams of elastic bodies,” in “Vibration Problems in Engineering” (John Wiley, 1974), pp. 455–477.
  54. Comsol Group, “COMSOL Multiphysics,” http://www.comsol.com/ .
  55. P. Chidamparam, A. W. Leissa, “Vibrations of planar curved beams, rings, and arches,” Appl. Mech. Rev. 46, 467–483 (1993). [CrossRef]
  56. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials: A Handbook (John Wiley, 1997).
  57. R. Melamud, B. Kim, S. A. Chandorkar, M. A. Hopcroft, M. Agarwal, C. M. Jha, T. W. Kenny, “Temperature-compensated high-stability silicon resonators,” Appl. Phys. Lett. 90, 244107 (2007). [CrossRef]
  58. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Strekalov, L. Maleki, “Direct observation of stopped light in a whispering-gallery-mode microresonator,” Phys. Rev. A 76, 023816 (2007). [CrossRef]
  59. T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, K. J. Vahala, “Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities,” Phys. Rev. Lett. 100, 103905 (2008). [CrossRef] [PubMed]
  60. L. A. DeLorenzo, K. C. Schwab, “Superfluid optomechanics: Coupling of a superfluid to a superconducting condensate” (2013),arXiv.org:1308.2164.
  61. J. Vig, “Dual-mode oscillators for clocks and sensors,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, New York, 1999), pp. 859–868.
  62. J. C. Salvia, R. Melamud, S. A. Chandorkar, S. F. Lord, T. W. Kenny, “Real-time temperature compensation of MEMS oscillators using an integrated micro-oven and a phase-locked loop,” J. Microelectromech. Syst. 19, 192–201 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited