OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1277–1286

Bridging the gap between optical fibers and silicon photonic integrated circuits

Wissem Sfar Zaoui, Andreas Kunze, Wolfgang Vogel, Manfred Berroth, Jörg Butschke, Florian Letzkus, and Joachim Burghartz  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1277-1286 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1676 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a rigorous approach for designing a highly efficient coupling between single mode optical fibers and silicon nanophotonic waveguides based on diffractive gratings. The structures are fabricated on standard SOI wafers in a cost-effective CMOS process flow. The measured coupling efficiency reaches −1.08 dB and a record value of −0.62 dB in the 1550 nm telecommunication window using a uniform and a nonuniform grating, respectively, with a 1dB-bandwidth larger than 40 nm.

© 2014 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(130.0130) Integrated optics : Integrated optics

ToC Category:
Integrated Optics

Original Manuscript: November 14, 2013
Revised Manuscript: January 5, 2014
Manuscript Accepted: January 5, 2014
Published: January 13, 2014

Wissem Sfar Zaoui, Andreas Kunze, Wolfgang Vogel, Manfred Berroth, Jörg Butschke, Florian Letzkus, and Joachim Burghartz, "Bridging the gap between optical fibers and silicon photonic integrated circuits," Opt. Express 22, 1277-1286 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. Lambert, R. C. Muthiah, H. Tsai, J. S. Bostak, A. Dentai, K. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. J. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, S. G. Grubb, “Current status of large-scale InP photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1470–1489 (2011). [CrossRef]
  2. A. Melloni, F. Morichetti, R. Costa, G. Cusmai, R. G. Heideman, R. Mateman, D. H. Geuzebroek, and A. Borreman, “TriPleX: a new concept in optical waveguiding,” presented at the 13th European Conference on Integrated Optics, Copenhagen, Denmark, ThA3 (2007).
  3. J. Leuthold, C. Koos, W. Freude, L. Alloatti, R. Palmer, D. Korn, J. Pfeifle, M. Lauermann, R. Dinu, S. Wehrli, M. Jazbinsek, P. Günter, M. Waldow, T. Wahlbrink, J. Bolten, H. Kurz, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, “Silicon-organic hybrid electro-optical devices,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401413 (2013). [CrossRef]
  4. M. J. Heck, H. Chen, A. W. Fang, B. R. Koch, D. Liang, H. Park, M. N. Sysak, J. E. Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(2), 333–346 (2011). [CrossRef]
  5. S. Klinger, M. Grözing, W. Sfar Zaoui, M. Berroth, M. Kaschel, M. Oehme, E. Kasper, and J. Schulze, “Ge on Si p-i-n photodiodes for a bit rate of up to 25 Gbit/s,” presented at the European Conference on Optical Communication, Vienna, Austria, 9.2.3 (2009).
  6. J. Liu, L. C. Kimerling, J. Michel, “Monolithic Ge-on-Si lasers for large-scale electronic-photonic integration,” Semicond. Sci. Technol. 27(9), 094006 (2012). [CrossRef]
  7. D. Taillaert, P. Bienstman, R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004). [CrossRef] [PubMed]
  8. N. Fang, Z. Yang, A. Wu, J. Chen, M. Zhang, S. Zou, X. Wang, “Three-dimensional tapered spot-size converter based on (111) silicon-on-insulator,” IEEE Photonics Technol. Lett. 21, 820–822 (2009).
  9. M. Pu, L. Liu, H. Ou, K. Yvind, J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010). [CrossRef]
  10. R. Takei, M. Suzuki, E. Omoda, S. Manako, T. Kamei, M. Mori, Y. Sakakibara, “Silicon knife-edge taper waveguide for ultralow-loss spot-size converter fabricated by photolithography,” Appl. Phys. Lett. 102(10), 101108 (2013). [CrossRef]
  11. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002). [CrossRef]
  12. D. Taillaert, W. Bogaerts, and R. Baets, “Efficient coupling between submicron SOI-waveguides and single-mode fibers,” in Proceedings of Symposium IEEE/LEOS Benelux Chapter, Enschede, The Netherlands (2003), pp. 289–292.
  13. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, S. Beckx, “Basic structures for photonic integrated circuits in silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004). [CrossRef] [PubMed]
  14. G. Z. Masanovic, G. T. Reed, W. Headley, B. Timotijevic, V. M. Passaro, R. Atta, G. Ensell, A. G. Evans, “A high efficiency input/output coupler for small silicon photonic devices,” Opt. Express 13(19), 7374–7379 (2005). [CrossRef] [PubMed]
  15. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007). [CrossRef]
  16. S. K. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Van Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” presented at the Conference on Lasers and Electro-Optics, Baltimore, Maryland, CTuC6 (2009). [CrossRef]
  17. X. Chen, C. Li, C. K. Fung, S. M. Lo, H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photonics Technol. Lett. 22(15), 1156–1158 (2010). [CrossRef]
  18. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17(3), 597–608 (2011). [CrossRef]
  19. A. Mekis, S. Abdalla, D. Foltz, S. Gloeckner, S. Hovey, S. Jackson, Y. Liang, M. Mack, G. Masini, M. Peterson, T. Pinguet, S. Sahni, M. Sharp, P. Sun, D. Tan, L. Verslegers, B. P. Welch, K. Yokoyama, S. Yu, P. M. De Dobbelaere, “A CMOS photonics platform for high-speed optical interconnects,” in Proceedings of IEEE Photonics Conference (2012), pp. 356–357.
  20. C. Zhang, J.-H. Sun, X. Xiao, W.-M. Sun, X.-J. Zhang, T. Chu, J.-Z. Yu, Y.-D. Yu, “High efficiency grating coupler for coupling between single-mode fiber and SOI waveguides,” Chin. Phys. Lett. 30(1), 014207 (2013). [CrossRef]
  21. B. Schmid, A. Petrov, M. Eich, “Optimized grating coupler with fully etched slots,” Opt. Express 17(13), 11066–11076 (2009). [PubMed]
  22. W. S. Zaoui, M. F. Rosa, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, “Cost-effective CMOS-compatible grating couplers with backside metal mirror and 69% coupling efficiency,” Opt. Express 20(26), B238–B243 (2012). [CrossRef] [PubMed]
  23. W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photonics Technol. Lett. 25(14), 1395–1397 (2013). [CrossRef]
  24. F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited