OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1940–1951

Radiative contribution to thermal conductance in animal furs and other woolly insulators

Priscilla Simonis, Mourad Rattal, El Mostafa Oualim, Azeddine Mouhse, and Jean-Pol Vigneron  »View Author Affiliations

Optics Express, Vol. 22, Issue 2, pp. 1940-1951 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (924 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper deals with radiation’s contribution to thermal insulation. The mechanism by which a stack of absorbers limits radiative heat transfer is examined in detail both for black-body shields and grey-body shields. It shows that radiation energy transfer rates should be much faster than conduction rates. It demonstrates that, for opaque screens, increased reflectivity will dramatically reduce the rate of heat transfer, improving thermal insulation. This simple model is thought to contribute to the understanding of how animal furs, human clothes, rockwool insulators, thermo-protective containers, and many other passive energy-saving devices operate.

© 2014 Optical Society of America

OCIS Codes
(160.2290) Materials : Fiber materials
(170.1420) Medical optics and biotechnology : Biology
(290.4210) Scattering : Multiple scattering
(350.5610) Other areas of optics : Radiation

ToC Category:

Original Manuscript: October 16, 2013
Revised Manuscript: December 8, 2013
Manuscript Accepted: December 10, 2013
Published: January 23, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

Priscilla Simonis, Mourad Rattal, El Mostafa Oualim, Azeddine Mouhse, and Jean-Pol Vigneron, "Radiative contribution to thermal conductance in animal furs and other woolly insulators," Opt. Express 22, 1940-1951 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. E. M. Liwanag, A. Berta, D. P. Costa, M. Abney, and T. M. Williams, “Morphological and thermal properties of mammalian insulation: the evolution of fur for aquatic living,” Biol. J. Linn. Soc.106, 926–939 (2012). [CrossRef]
  2. B.J. Teerink, Hair of West-European Mammals (Cambridge University, 1991).
  3. P. R. Morrison and W. J. Tietz, “Cooling and thermal conductivity in three small Alaskan mammals,” J. Mammal.38(1), 78–86 (1957). [CrossRef]
  4. C. F. Herreid and B. Kessel, “Thermal conductance in birds and mammals,” Comp. Biochem. Physiol.21(2), 405–414 (1967). [CrossRef] [PubMed]
  5. G. S. Bakken, “Wind speed dependence of the overall thermal conductance of fur and feather insulation,” J. Therm. Biol.16(2), 121–126 (1991). [CrossRef]
  6. J. C. McLoughlin, Synapsida: A New Look into the Origin of Mammals (Viking, 1980).
  7. R. J. G. Savage and M. R. Long, Mammal Evolution, an Illustrated Guide (Facts On File Inc., 1986).
  8. P. F. Scholander, R. Hock, V. Walters, and L. Irving, “Adaptation to cold in artic and tropical mammals and birds in relation to body temperature, insulation and basal metabolic rate,” Biol. Bull.99(2), 259–271 (1950). [CrossRef] [PubMed]
  9. C. Dawson, J. F. V. Vincent, G. Jeronimidis, G. Rice, and P. Forshaw, “Heat transfer through penguin feathers,” J. Theor. Biol.199, 291–295 (1999). [CrossRef] [PubMed]
  10. C. D. Stahel and S. C. Nicol, “Temperature regulation in the little penguin, Eudyptula minor, in air and water,” J. Comp. Physiol.148, 93–100 (1982).
  11. L. B. Davis and R. C. Birkebak, “Convective energy transfer in fur,” in Perspectives in Biophysical Ecology, Vol. 12 of Ecological Studies (Springer, 1975), pp. 525–548. [CrossRef]
  12. G. E. Walsberg, “The significance of fur structure for solar heat gain in the rock squirrel, Spermophilus variegatus,” J. Exp. Biol.138, 243–257 (1988). [PubMed]
  13. G. E. Walsberg, “Consequences of skin color and fur properties for solar heat gain and ultraviolet irradiance in two mammals,” J. Comp. Physiol. B158(2), 213–221 (1988). [CrossRef] [PubMed]
  14. C. Skowron and M. Kern, “The insulation in nests of selected North-American songbirds,” Auk97(4), 816–824 (1980).
  15. G. Rybicki and A. P. Lightman, Radiative Processes in Astrophysics, (Wiley-Interscience, 1979).
  16. K. Stephan and A. Laesecke, “The thermal conductivity of fluid air,” J. Phys. Chem. Ref. Data14(1), 227–234 (1985). [CrossRef]
  17. C. M. Soukoulis, Photonic Band Gaps and Localization Nato ASI series B 308(Plenum, 1993). [CrossRef]
  18. A. Langendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty years of Anderson localization,” Phys. Today62(8), 24–29 (2009). [CrossRef]
  19. R. G. Somes and R. E. Burger, “Inheritance of the white and pied plumage color patterns in the Indian peafowl (Pavo cristatus),” J. Hered84(1), 57–62 (1993).
  20. S. Yoshioka and S. Kinoshita, “Effect of macroscopic structure in iridescent color of the peacock feathers,” Forma17, 169–181 (2002).
  21. J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A.100(22), 12576–12578 (2003). [CrossRef] [PubMed]
  22. I. M. Weiss and H. O. K. Kirchner, “The peacock’s train (Pavo cristatus and Pavo cristatus mut. alba) I. Structure, mechanics, and chemistry of the tail feather,” J. Exp. Zool. A Ecol. Genet. Physiol.313, 690–703 (2010). [CrossRef] [PubMed]
  23. R. Soulen, “James Dewar, his flask and other achievements,” Phys. Today49(3), 32–37 (1996). [CrossRef]
  24. F. Villa, M. Bersanelli, C. Burigana, R. Butler, N. Mandolesi, A. Mennella, G. Morgante, M. Sandri, L. Terenzi, and L. Valenziano, “The Planck telescope,” in AIP Conference Proceedings616, 224–228 (2001). [CrossRef]
  25. U. Sivert and A. Heidi, “Thermal insulation performance of reflective material layers in well insulated timber frame structures,” in Proceedings of 8th Symp. Building Physics in the Nordic Countries1, 1–8 (2008).
  26. T. I. Ward and S. M. Doran, “The thermal performance of multi-foil insulation,” U. K. Government Building Regulation Report, (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited