OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 2043–2050

Giant positive and negative Goos-Hänchen shift on dielectric gratings caused by guided mode resonance

Rui Yang, Wenkan Zhu, and Jingjing Li  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 2043-2050 (2014)
http://dx.doi.org/10.1364/OE.22.002043


View Full Text Article

Enhanced HTML    Acrobat PDF (795 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Giant positive and negative Goos-Hänchen shift more than 5000 times of the operating wavelength is observed when a beam is totally reflected from a substrate decorated by a dielectric grating. Different to the former studies where Goos-Hänchen shift is related to metamaterials or plasmonic materials with ohmic loss, here the giant shift is realized with unity reflectance without the loss. This is extremely advantageous for sensor applications. The Goos-Hänchen shift exhibits a strong resonant feature at the frequency of guided mode resonance, and is associated to the energy flow carried by the guided mode.

© 2014 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.0130) Integrated optics : Integrated optics
(260.5740) Physical optics : Resonance

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 25, 2013
Revised Manuscript: December 19, 2013
Manuscript Accepted: January 9, 2014
Published: January 23, 2014

Citation
Rui Yang, Wenkan Zhu, and Jingjing Li, "Giant positive and negative Goos-Hänchen shift on dielectric gratings caused by guided mode resonance," Opt. Express 22, 2043-2050 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-2043


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Goos, H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Annalen der Physik 436, 333346 (1947). [CrossRef]
  2. M. Merano, A. Aiello, M. GWt Hooft, E. Eliel, J. Woerdman, “Observation of goos-hanchen shifts in metallic reflection,” Opt. Express 15, 15928–15934 (2007). [CrossRef] [PubMed]
  3. X. Yin, L. Hesselink, Z. Liu, N. Fang, X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85, 372 (2004). [CrossRef]
  4. I. V. Shadrivov, A. A. Zharov, Y. S. Kivshar, “Giant goos-hanchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83, 2713–2715 (2003). [CrossRef]
  5. R. W. Ziolkowski, “Pulsed and CW gaussian beam interactions with double negative metamaterial slabs,” Opt. Express 11, 662–681 (2003). [CrossRef] [PubMed]
  6. T. Hashimoto, T. Yoshino, “Optical heterodyne sensor using the goos-hänchennchen shift,” Opt. Lett. 14, 913–915 (1989). [CrossRef] [PubMed]
  7. X. Yin, L. Hesselink, “Goos-hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89, 261108 (2006). [CrossRef]
  8. T.-K. Lee, G.-Y. Oh, H.-S. Kim, D. G. Kim, Y.-W. Choi, “A high-q biochemical sensor using a total internal reflection mirror-based triangular resonator with an asymmetric MachZehnder interferometer,” Opt. Commun. 285, 1807–1813 (2012). [CrossRef]
  9. J. Sun, X. Wang, C. Yin, P. Xiao, H. Li, Z. Cao, “Optical transduction of e. coli O157:H7 concentration by using the enhanced goos-hnchen shift,” J. Appl. Phys. 112, 083104 (2012). [CrossRef]
  10. X. Wang, C. Yin, J. Sun, H. Li, Y. Wang, M. Ran, Z. Cao, “High-sensitivity temperature sensor using the ultrahigh order mode-enhanced goos-hänchen effect,” Opt. Express 21, 13380–13385 (2013). [CrossRef] [PubMed]
  11. Y. Wang, X. Jiang, Q. Li, Y. Wang, Z. Cao, “High-resolution monitoring of wavelength shifts utilizing strong spatial dispersion of guided modes,” Appl. Phys. Lett. 101, 061106 (2012). [CrossRef]
  12. K. Artmann, “Annalen der physik 6,” Band 2, 87 (1948).
  13. T. Tamir, “Nonspecular phenomena in beam fields reflected by multilayered media,” J. Opt. Soc. Am. A 3, 558–565 (1986). [CrossRef]
  14. K. Y. Bliokh, A. Aiello, “Goos-hächen and imbert-fedorov beam shifts: an overview,” J. Opt. 15, 014001 (2013). [CrossRef]
  15. T. Tamir, E. Garmire, Integrated optics (Springer-Verlag, Berlin; New York, 1979).
  16. R. H. Renard, “Total reflection: A new evaluation of the goos-hänchen shift,” J. Opt. Soc. Am. 54, 1190–1196 (1964). [CrossRef]
  17. T. Tamir, H. L. Bertoni, “Lateral displacement of optical beams at multilayered and periodic structures,” J. Opt. Soc. Am. 61, 1397–1413 (1971). [CrossRef]
  18. M. A. Breazeale, M. A. Torbett, “Backward displacement of waves reflected from an interface having superimposed periodicity,” Appl. Phys. Lett. 29, 456 (1976). [CrossRef]
  19. A. Teklu, M. A. Breazeale, N. F. Declercq, R. D. Hasse, M. S. McPherson, “Backward displacement of ultrasonic waves reflected from a periodically corrugated interface,” J. Appl. Phys. 97, 084904 (2005). [CrossRef]
  20. S. W. Herbison, J. M. Vander Weide, N. F. Declercq, “Observation of ultrasonic backward beam displacement in transmission through a solid having superimposed periodicity,” Appl. Phys. Lett. 97, 041908 (2010). [CrossRef]
  21. M. Shokooh-Saremi, R. Magnusson, “Leaky-mode resonant reflectors with extreme bandwidths,” Opt. Lett. 35, 1121–1123 (2010). [CrossRef] [PubMed]
  22. Y. Ding, R. Magnusson, “Band gaps and leaky-wave effects in resonant photonic-crystal waveguides,” Opt. Express 15, 680–694 (2007). [CrossRef] [PubMed]
  23. C. J. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol. 26, 014043 (2011). [CrossRef]
  24. M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008). [CrossRef]
  25. C. Mateus, M. Huang, Y. Deng, A. Neureuther, C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonic. Technol. Lett. 16, 518–520 (2004). [CrossRef]
  26. S. S. Wang, R. Magnusson, J. S. Bagby, M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1470–1474 (1990). [CrossRef]
  27. R. Magnusson, “Flat-top resonant reflectors with sharply delimited angular spectra: an application of the rayleigh anomaly,” Opt. Lett. 38, 989–991 (2013). [CrossRef] [PubMed]
  28. S. M. Norton, T. Erdogan, G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A. 14, 629–639 (1997). [CrossRef]
  29. D. Fattal, J. Li, Z. Peng, M. Fiorentino, R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4, 466–470 (2010). [CrossRef]
  30. J. Li, D. Fattal, M. Fiorentino, R. G. Beausoleil, “Strong optical confinement between nonperiodic flat dielectric gratings,” Phys. Rev. Lett. 106, 193901 (2011). [CrossRef] [PubMed]
  31. L. Li, “New formulation of the fourier modal method for crossed surface relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997). [CrossRef]
  32. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited