OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2185–2192

Performance improvement of double-sideband signals in radio-over-fiber links utilizing pre-distortion method

Jia Ye, Lianshan Yan, An Li, Xi Chen, and William Shieh  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2185-2192 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1117 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we investigate the optimal carrier-to-sideband ratio (CSR) for optical double-sideband (DSB) signals in radio-over-fiber (RoF) transmission. A pre-distortion method based on spectral shaping is proposed to optimize the signal CSR and eliminate the dispersion-induced power fading. A 12 GHz RoF transmission over 29 km standard single mode fiber (SSMF) is experimentally demonstrated which reveals that pre-distorted DSB has a 4.4 dB improvement over the one without pre-distortion, and 1.2 dB sensitivity advantage over single sideband (SSB) both with optimal CSR. The pre-distortion method is also applied to multi-channel transmission. The multi-channel experiment shows that for all channels the dispersion-induced power fading effects can be simultaneously mitigated and the pre-distorted DSB signals have ~1 dB sensitivity improvement over the SSB signals.

© 2014 Optical Society of America

OCIS Codes
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Optical Communications

Original Manuscript: October 23, 2013
Revised Manuscript: December 8, 2013
Manuscript Accepted: December 20, 2013
Published: January 27, 2014

Jia Ye, Lianshan Yan, An Li, Xi Chen, and William Shieh, "Performance improvement of double-sideband signals in radio-over-fiber links utilizing pre-distortion method," Opt. Express 22, 2185-2192 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Seeds, K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006). [CrossRef]
  2. J. Capmany, D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007). [CrossRef]
  3. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009). [CrossRef]
  4. M. Sauer, A. Kobyakov, J. George, “Radio over fiber for picocellular network architectures,” J. Lightwave Technol. 25(11), 3301–3320 (2007). [CrossRef]
  5. C. Lim, T. A. Nirmalathas, M. Bakaul, P. Gamage, K.-L. Lee, Y. Yang, R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol. 28(4), 390–405 (2010). [CrossRef]
  6. J. Yu, Z. Jia, L. Yi, Y. Su, G.-K. Chang, T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006). [CrossRef]
  7. D. Fonseca, A. V. T. Cartaxo, P. Monteiro, “Optical single-sideband transmitter for various electrical signaling formats,” J. Lightwave Technol. 24(5), 2059–2069 (2006). [CrossRef]
  8. Z. Xu, X. Zhang, J. Yu, “Frequency upconversion of multiple RF signals using optical carrier suppression for radio over fiber downlinks,” Opt. Express 15(25), 16737–16747 (2007). [CrossRef] [PubMed]
  9. U. Gliese, S. Norskov, T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44(10), 1716–1724 (1996). [CrossRef]
  10. Y. Cui, K. Xu, J. Dai, X. Q. Sun, Y. T. Dai, Y. F. Ji, J. T. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photon. Technol. Lett. 24(14), 1173–1175 (2012). [CrossRef]
  11. S. Li, X. Zheng, H. Zhang, B. Zhou, “Compensation of dispersion-induced power fading for highly linear radio-over-fiber link using carrier phase-shifted double sideband modulation,” Opt. Lett. 36(4), 546–548 (2011). [CrossRef] [PubMed]
  12. G. H. Nguyen, J. Poette, B. Cabon, “Importance of Chirp Effect in Millimeter Wave Optical Upconversion Systems,” J. Lightwave Technol. 29(12), 1753–1758 (2011). [CrossRef]
  13. S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, J. Chazelas, “Stimulated brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett. 36(11), 944–946 (2000). [CrossRef]
  14. C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, R. Waterhouse, “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006). [CrossRef]
  15. R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, P. Bayval, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005). [CrossRef]
  16. D. McGhan, C. Laperle, A. Savchenkov, C. D. Li, G. Mak, M. O'Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s without optical dispersion compensation,” IEEE Photon. Technol. Lett. 18(2), 400–402 (2006). [CrossRef]
  17. T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St. J. Russell, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999). [CrossRef]
  18. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001). [CrossRef]
  19. J. T. Willits, A. M. Weiner, S. T. Cundiff, “Line-by-line pulse shaping with spectral resolution below 890 MHz,” Opt. Express 20(3), 3110–3117 (2012). [CrossRef] [PubMed]
  20. H. Schmuck, “Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion,” Electron. Lett. 31(21), 1848–1849 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited