OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2267–2277

Self-action of continuous laser radiation and Pearcey diffraction in a water suspension with light-absorbing particles

O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 2267-2277 (2014)
http://dx.doi.org/10.1364/OE.22.002267


View Full Text Article

Enhanced HTML    Acrobat PDF (1980 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Water suspension of light-absorbing nano-sized particles is an example of a medium in which non-linear effects are present at moderate light intensities favorable for optical treatment of organic and biological objects. We study experimentally the phenomena emerging in a thin layer of such a medium under the action of inhomogeneous light field formed due to the Pearcey diffraction pattern near a microlens focus. In this high-gradient field, the light energy absorbed by the particles induces inhomogeneous distribution of the medium refraction index, which results in observable self-diffraction of the incident light, here being strongly sensitive to the medium position with respect to the focus. This technique, based on the complex spatial structure of both the incident and the diffracted fields, can be employed for the detection and measurement of weak non-linearities.

© 2014 Optical Society of America

OCIS Codes
(260.2160) Physical optics : Energy transfer
(260.5430) Physical optics : Polarization
(350.4990) Other areas of optics : Particles
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 8, 2013
Revised Manuscript: December 30, 2013
Manuscript Accepted: January 6, 2014
Published: January 28, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Citation
O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, "Self-action of continuous laser radiation and Pearcey diffraction in a water suspension with light-absorbing particles," Opt. Express 22, 2267-2277 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-2267


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]
  2. A. Ashkin, J. P. Gordon, “Stability of radiation-pressure particle traps: an optical Earnshaw theorem,” Opt. Lett. 8(10), 511–513 (1983). [CrossRef] [PubMed]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  4. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  5. M. Dienerowitz, M. Mazilu, K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008). [CrossRef]
  6. T. A. Nieminen, J. Higuet, G. Knoner, V. L. Y. Loke, S. Parkin, W. Singer, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optically driven micromachines: progress and prospects,” Proc. SPIE 6038, 237–245 (2006).
  7. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, Y. S. Kivshar, “Optical guiding of absorbing nanoclusters in air,” Opt. Express 17(7), 5743–5757 (2009). [CrossRef] [PubMed]
  8. A. S. Desyatnikov, V. G. Shvedov, A. V. Rode, W. Krolikowski, Y. S. Kivshar, “Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment,” Opt. Express 17(10), 8201–8211 (2009). [CrossRef] [PubMed]
  9. A. Y. Bekshaev, “Subwavelength particles in an inhomogeneous light field: Optical forces associated with the spin and orbital energy flows,” J. Opt. 15(4), 044004 (2013). [CrossRef]
  10. A. Y. Bekshaev, K. Bliokh, M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt. 13(5), 053001 (2011). [CrossRef]
  11. A. Y. Bekshaev, O. V. Angelsky, S. G. Hanson, C. Y. Zenkova, “Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows,” Phys. Rev. A 86(2), 023847 (2012). [CrossRef]
  12. Y. Q. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007). [CrossRef] [PubMed]
  13. A. T. O’Neil, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002). [CrossRef] [PubMed]
  14. J. E. Curtis, D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003). [CrossRef] [PubMed]
  15. V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91(9), 093602 (2003). [CrossRef] [PubMed]
  16. O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, C. Yu. Zenkova, “Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams,” Opt. Express 20(4), 3563–3571 (2012). [CrossRef] [PubMed]
  17. O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. I. Mokhun, S. G. Hanson, C. Yu. Zenkova, A. V. Tyurin, “Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow,” Opt. Express 20(10), 11351–11356 (2012). [CrossRef] [PubMed]
  18. Y. Wada, S. Totoki, M. Watanabe, N. Moriya, Y. Tsunazawa, H. Shimaoka, “Nanoparticle size analysis with relaxation of induced grating by dielectrophoresis,” Opt. Express 14(12), 5755–5764 (2006). [CrossRef] [PubMed]
  19. O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, C. Yu. Zenkova, “Self-diffraction of continuous laser radiation in a disperse medium with absorbing particles,” Opt. Express 21(7), 8922–8938 (2013). [CrossRef] [PubMed]
  20. D. N. Auston, D. J. Bradley, A. J. Campillo, K. B. Eisenthal, E. P. Ippen, D. von der Linde, C. V. Shank, and S. L. Shapiro, Ultrashort Light Pulses: Picosecond Technique and Applications (Springer-Verlag, 1977).
  21. S. A. Akhmanov, V. A. Vysloukh, A. S. Chirkin, “Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation,” Sov. Phys. Usp. 29(7), 642–647 (1986). [CrossRef]
  22. V. L. Vinetskiĭ, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 22(9), 742–756 (1979). [CrossRef]
  23. S. A. Akhmanov, A. P. Sukhorukov, R. V. Khokhlov, “Self-focusing and diffraction of light in a nonlinear medium,” Sov. Phys. Usp. 10(5), 609–636 (1968). [CrossRef]
  24. J.-G. Tian, C. Zhang, G. Zhang, “The origin of optical nonlinearities of chinese tea,” Optik (Stuttg.) 90, 1–4 (1992).
  25. J.-G. Tian, C. Zhang, G. Zhang, J. Li, “Position dispersion and optical limiting resulting from thermally induced nonlinearities in Chinese tea liquid,” Appl. Opt. 32(33), 6628–6632 (1993). [CrossRef] [PubMed]
  26. K.-E. Peiponen, R. Uma Maheswari, C. Gu, T. Jaaskelainen, “Heat-induced transient optical effects in chinese tea,” Optik (Stuttg.) 93, 167–169 (1993).
  27. H.-J. Zhang, J.-H. Dai, P.-Y. Wang, L.-A. Wu, “Self-focusing and self-trapping in new types of Kerr media with large nonlinearities,” Opt. Lett. 14(13), 695–696 (1989). [CrossRef] [PubMed]
  28. M. Sheik-bahae, A. A. Said, E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14(17), 955–957 (1989). [CrossRef] [PubMed]
  29. J. F. Nye, “Evolution from Fraunhofer to a Pearcey diffraction pattern,” J. Opt. A, Pure Appl. Opt. 5(5), 495–502 (2003). [CrossRef]
  30. J. F. Nye, “From Airy rings to the elliptic umbilic diffraction catastrophe,” J. Opt. A, Pure Appl. Opt. 5(5), 503–510 (2003). [CrossRef]
  31. T. Pearcey, “The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic,” Philos. Mag. 37, 311–317 (1946).
  32. M. Born and E. Wolf, Principles of Optics (New York, Pergamon Press., 1999).
  33. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 3: Elements of Random Fields (Springer-Verlag, 1989).
  34. P. Gerstner, J. Paltakari, P. A. C. Gane, “Measurement and modelling of heat transfer in paper coating structures,” http://www.tappi.org/Downloads/Conference-Papers/2008/08ADV/08adv26.aspx . [CrossRef]
  35. S. H. Simpson, S. Hanna, “Orbital motion of optically trapped particles in Laguerre-Gaussian beams,” J. Opt. Soc. Am. A 27(9), 2061–2071 (2010). [CrossRef] [PubMed]
  36. N. V. Malai, “Effect of motion of the medium on the photophoresis of hot hydrosol particles,” Fluid Dyn. 41(6), 984–991 (2006). [CrossRef]
  37. C. Y. Soong, W. K. Li, C. H. Liu, P. Y. Tzeng, “Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids,” Opt. Express 18(3), 2168–2182 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited