OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2317–2323

Suspended GaN-based band-edge type photonic crystal nanobeam cavities

Tzeng Tsong Wu, Hao Wen Chen, Yu Pin Lan, Tien Chang Lu, and Shing Chung Wang  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2317-2323 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4125 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrated GaN-based photonic crystal (PC) nanobeam cavities by using the e-beam lithography and the suspended nanobeams were realized by focused-ion beam (FIB) milling. One resonant mode was clearly observed at 411.7 nm at 77K by optical pumping. The quality factor was measured to be to 7.4 × 102. Moreover, the degree of polarization value was measured to be 40%. The temperature-dependent characteristics were measured and discussed, which unambiguously demonstrated that the observed resonant peak originated from the band-edge mode of the one-dimensional PC nanobeam.

© 2014 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(220.4241) Optical design and fabrication : Nanostructure fabrication
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: November 21, 2013
Revised Manuscript: December 26, 2013
Manuscript Accepted: December 26, 2013
Published: January 28, 2014

Tzeng Tsong Wu, Hao Wen Chen, Yu Pin Lan, Tien Chang Lu, and Shing Chung Wang, "Suspended GaN-based band-edge type photonic crystal nanobeam cavities," Opt. Express 22, 2317-2323 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  3. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7 (1999). [CrossRef]
  4. M. Imada, A. Chutinan, S. Noda, M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002). [CrossRef]
  5. I. Vurgaftman, J. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39(6), 689–700 (2003). [CrossRef]
  6. H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319(5862), 445–447 (2008). [CrossRef] [PubMed]
  7. T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. Yu, H. C. Kuo, S. C. Wang, S. H. Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92(1), 011129 (2008). [CrossRef]
  8. S. Kawashima, T. Kawashima, Y. Nagatomo, Y. Hori, H. Iwase, T. Uchida, K. Hoshino, A. Numata, M. Uchida, “GaN-based surface-emitting laser with two-dimensional photonic crystal acting as distributed-feedback grating and optical cladding,” Appl. Phys. Lett. 97(25), 251112 (2010). [CrossRef]
  9. M. Kim, C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, J. R. Meyer, “Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared,” Appl. Phys. Lett. 88(19), 191105 (2006). [CrossRef]
  10. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  11. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004). [CrossRef] [PubMed]
  12. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997). [CrossRef]
  13. M. Notomi, E. Kuramochi, H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16(15), 11095–11102 (2008). [CrossRef] [PubMed]
  14. S. J. Kim, B. H. Ahn, J. Y. Kim, K. Y. Jeong, K. S. Kim, Y. H. Lee, “Nanobeam photonic bandedge lasers,” Opt. Express 19(24), 24055–24060 (2011). [CrossRef] [PubMed]
  15. Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010). [CrossRef]
  16. R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett. 98(17), 173104 (2011). [CrossRef]
  17. I. S. Maksymov, “Optical switching and logic gates with hybrid plasmonic–photonic crystal nanobeam cavities,” Phys. Lett. A 375(5), 918–921 (2011). [CrossRef]
  18. Q. M. Quan, P. B. Deotare, M. Lončar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010). [CrossRef]
  19. S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006). [CrossRef] [PubMed]
  20. T. C. Lu, J. R. Chen, S. C. Lin, S. W. Huang, S. C. Wang, Y. Yamamoto, “Room temperature current injection polariton light emitting diode with a hybrid microcavity,” Nano Lett. 11(7), 2791–2795 (2011). [CrossRef] [PubMed]
  21. E. J. Cho, F. V. Bright, “Optical Sensor Array and Integrated Light Source,” Anal. Chem. 73(14), 3289–3293 (2001). [CrossRef] [PubMed]
  22. S. Sergent, M. Arita, S. Kako, S. Iwamoto, Y. Arakawa, “High-Q (>5000) AlN nanobeam photonic crystal cavity embedding GaN quantum dots,” Appl. Phys. Lett. 100(12), 121103 (2012). [CrossRef]
  23. S. Sergent, M. Arita, S. Kako, K. Tanabe, S. Iwamoto, Y. Arakawa, “High-Q AlN photonic crystal nanobeam cavities fabricated by layer transfer,” Appl. Phys. Lett. 101(10), 101106 (2012). [CrossRef]
  24. M. Arita, S. Ishida, S. Kako, S. Iwamoto, Y. Arakawa, “AlN air-bridge photonic crystal nanocavities demonstrating high quality factor,” Appl. Phys. Lett. 91(5), 051106 (2007). [CrossRef]
  25. D. Neel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett. 98(26), 261106 (2011). [CrossRef]
  26. N. V. Trivin, G. Rossbach, U. Dharanipathy, J. Levrat, A. Castiglia, J.-F. Carlin, K. A. Atlasov, R. Butt, R. Houdr, N. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100(7), 071103 (2012). [CrossRef]
  27. S. W. Chang, T. R. Lin, S. L. Chuang, “Theory of plasmonic Fabry-Perot nanolasers,” Opt. Express 18(14), 15039–15053 (2010). [CrossRef] [PubMed]
  28. A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, Y. Arakawa, “Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness,” Opt. Express 16(1), 448–455 (2008). [CrossRef] [PubMed]
  29. J. R. Pugh, Y.-L. D. Ho, P. J. Heard, G. R. Nash, T. Ashley, J. G. Rarity, M. J. Cryan, “Design and fabrication of a midinfrared photonic crystal defect cavity in indium antimonide,” J. Opt. A, Pure Appl. Opt. 11(5), 054006 (2009). [CrossRef]
  30. N. Okada, Y. Yamada, K. Tadatomo, “Structural and optical evaluation of InGaN/GaN multi-quantum wells on template consisting of in-plane alternately arranged relaxed InGaN and GaN,” J. Appl. Phys. 111(4), 043508 (2012). [CrossRef]
  31. R. R. Reeber, K. Wang, “Lattice parameters and thermal expansion of GaN,” J. Mater. Res. 15(01), 40–44 (2000). [CrossRef]
  32. N. Watanabe, T. Kimoto, J. Suda, “The temperature dependence of the refractive indices of GaN and AlN from room temperature up to 515 °C,” J. Appl. Phys. 104(10), 106101 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited