OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2429–2442

Homogenization of quasi-1d metamaterials and the problem of extended bandwidth

A. V. Goncharenko, E. F. Venger, and A. O. Pinchuk  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2429-2442 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (797 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We derive approximate analytical expressions for the effective permittivity tensor of two-phase metamaterials whose geometry is close to one-dimensional (quasi-one-dimensional metamaterials). Specifically, we consider the metamaterial made of parallel slabs with width given by a linear or parabolic function. Using our approach, the design of epsilon-near-zero, ultra-low and high refractive index metallodielectric metamaterials with extended bandwidth has been demonstrated. In addition, generalizations to the three-dimensional case and some limitations of the presented technique are briefly considered.

© 2014 Optical Society of America

OCIS Codes
(260.2065) Physical optics : Effective medium theory
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: November 21, 2013
Manuscript Accepted: January 14, 2014
Published: January 28, 2014

A. V. Goncharenko, E. F. Venger, and A. O. Pinchuk, "Homogenization of quasi-1d metamaterials and the problem of extended bandwidth," Opt. Express 22, 2429-2442 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. W. Milton, The Theory of Composites (Cambridge University, 2002). [CrossRef]
  2. W. Voight, Lehrbuch der Kristallphysik (Teubner-Verlag, 1928).
  3. A. Reuss, “Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle,” Z. Angew. Math. Mech. 9, 49–58 (1929). [CrossRef]
  4. W.T. Perrins, R.C. McPedran, “Metamaterials and the homogenization of composite materials,” Metamaterials 4, 24–31 (2010). [CrossRef]
  5. A.A. Krokhin, P. Halevi, J. Arriaga, “Long-wavelength limit (homogenization) for two-dimensional photonic crystals,” Phys. Rev. B 65, 115208 (2002). [CrossRef]
  6. M. Sahimi, Heterogeneous Materials. I. Linear Transport and Optical Properties (Springer, 2003).
  7. A.V. Goncharenko, “Limiting geometries and dielectric tensor of superlattices,” Tech. Phys. Lett. 26(7), 594–596 (2000). [CrossRef]
  8. M. Scalora, M.J. Bloemer, A.S. Pethel, J.P. Dowling, C.M. Bowden, A.S. Manka, “Transparent, metallodielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83, 2377–2383 (1998). [CrossRef]
  9. H. Rauh, G.I. Yampolskaya, S.V. Yampolskii, “Optical transmittance of photonic structures with linearly graded dielectric constituents,” New J. Phys. 12, 073033 (2010). [CrossRef]
  10. L.V. Alekseyev, E.E. Narimarov, T. Tumkur, H. Li, Yu. A. Barnakov, M.A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010). [CrossRef]
  11. A.V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G.A. Wurtz, R. Atkinson, R. Pollard, V.A. Podolskiy, A.V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nature Mater. 8, 867–871 (2009). [CrossRef]
  12. P. Ginzburg, F. J. Rodriguez Fortuno, G.A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R.J. Pollard, I. Iorsh, A. Atrashchenko, P.A. Belov, Y.S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, A.V. Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 21, 14907–14917 (2013). [CrossRef] [PubMed]
  13. P. Belov, Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006). [CrossRef]
  14. Z. Jacob, L.V. Alekseev, E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006). [CrossRef] [PubMed]
  15. C.R. Simovski, P.A. Belov, A.A. Atrashchenko, Y.S. Kivshar, “Wire metamaterials: Physics and applications,” Adv. Mater. 24, 4229–4248 (2012). [CrossRef] [PubMed]
  16. D.R. Smith, P. Kolinko, D. Schurig, “Negative refraction in indefinite media,” J. Opt. Soc. Am. B 21, 1032–1043 (2004). [CrossRef]
  17. J. Yao, Z Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A.M. Stacy, X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008). [CrossRef] [PubMed]
  18. M.A. Noginov, Yu.A. Barnakov, G. Zhu, T. Tumkur, H. Li, E.E. Narimanov, “Bulk photonic metamaterials with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009). [CrossRef]
  19. A.V. Goncharenko, V.U. Nazarov, K.R. Chen, “Development of metamaterials with desired broadband optical properties,” Appl. Phys. Lett. 101, 071907 (2012). [CrossRef]
  20. A.V. Goncharenko, K.R. Chen, “Strategy for designing epsilon-near-zero nanostructured metamaterials over a frequency range,” J. Nanophoton. 4, 041530 (2010). [CrossRef]
  21. A.V. Goncharenko, V.U. Nazarov, K.R. Chen, “Nanostructured metamaterials with broadband optical properties,” Opt. Mater. Express 3, 143–156 (2013). [CrossRef]
  22. J.B. Keller, “A theorem on the conductivity of a composite medium,” J. Math. Phys. 5, 548–549 (1964). [CrossRef]
  23. A. Vial, T. Laroche, “Comparison of gold and silver dispersion laws suitable for FDTD simulations,” Appl. Phys. B 93, 139–143 (2008). [CrossRef]
  24. L. Sun, K.W. Yu, “Strategy for designing broadband epsilon-near-zero metamaterials,” J. Opt. Soc. Am. B 29, 984–989 (2012). [CrossRef]
  25. L. Sun, K.W. Yu, X. Yang, “Integrated optical devices based on broadband epsilon-near-zero meta-atoms,” Opt. Lett. 37, 3096–3098 (2012). [CrossRef] [PubMed]
  26. A.K. Popov, S.A. Myslivets, “Transformable broad-band transparency and amplification in negative-index films,” Appl. Phys. Lett. 93, 191117 (2008). [CrossRef]
  27. A.N. Lagarkov, V.N. Kisel, A.K. Sarychev, “Loss and gain in metamaterials,” J. Opt. Soc. Am. B 27, 648–659 (2010). [CrossRef]
  28. J. Elser, R. Wangberg, V.A. Podolskiy, E.E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89, 261102 (2006). [CrossRef]
  29. W. Yan, N.A. Mortensen, M. Wubs, “Hypebolic metamaterial lens with hydrodynamic nonlocal response,” Opt. Express 21, 15026–15036 (2013). [CrossRef] [PubMed]
  30. C. David, N.A. Mortensen, J. Christensen, “Perfect imaging, epsilon-near zero phenomena and waveguiding in the scope of nonlocal effects,” Sci. Rept. 3, 02526 (2013).
  31. X.X. Liu, A. Alu, “Limitations and potential of metamaterial lenses,” J. Nanophoton. 5, 053509 (2011). [CrossRef]
  32. C.R. Simovski, “On electromagnetic characterization and homogenization of nanostructured metamaterials,” J. Opt. 13, 013001 (2011). [CrossRef]
  33. A.A. Orlov, P.M. Voroshilov, P.A. Belov, Y.S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B 84, 045424 (2011). [CrossRef]
  34. A.V. Chebykin, A.A. Orlov, A.V. Vozianova, S.I. Maslovski, Yu.S. Kivshar, P.A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011). [CrossRef]
  35. P.A. Belov, R. Marques, S.I. Maslovski, I.S. Nefedov, M. Silveirinha, C.R. Simovski, S.A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003). [CrossRef]
  36. S.I. Maslovski, M.G. Silveirinha, “Nonlocal permittivity from a quasistatic model for a class of wire media,” Phys. Rev. B 80, 245101 (2009). [CrossRef]
  37. N. Dubrovina, L.O. Le Cunff, N. Burokur, R. Ghasemi, A. Degiron, A. De Lustrac, A. Vial, G. Leronded, A. Lupu, “Single metafilm effective medium behavior in optical domain: Maxwell-Garnett approximation and beyond,” Appl. Phys. A 109, 901–906 (2012). [CrossRef]
  38. E.A. Gibson, I.R. Gabitov, A.I. Maimistov, N.M. Litchinitser, “Transition metamaterials with spatially separated zeros,” Opt. Lett. 36, 3624–3626 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited