OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2511–2518

A fully-integrated 12.5-Gb/s 850-nm CMOS optical receiver based on a spatially-modulated avalanche photodetector

Myung-Jae Lee, Jin-Sung Youn, Kang-Yeob Park, and Woo-Young Choi  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2511-2518 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (12160 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a fully integrated 12.5-Gb/s optical receiver fabricated with standard 0.13-µm complementary metal-oxide-semiconductor (CMOS) technology for 850-nm optical interconnect applications. Our integrated optical receiver includes a newly proposed CMOS-compatible spatially-modulated avalanche photodetector, which provides larger photodetection bandwidth than previously reported CMOS-compatible photodetectors. The receiver also has high-speed CMOS circuits including transimpedance amplifier, DC-balanced buffer, equalizer, and limiting amplifier. With the fabricated optical receiver, detection of 12.5-Gb/s optical data is successfully achieved at 5.8 pJ/bit. Our receiver achieves the highest data rate ever reported for 850-nm integrated CMOS optical receivers.

© 2014 Optical Society of America

OCIS Codes
(040.6040) Detectors : Silicon
(200.4650) Optics in computing : Optical interconnects
(230.0230) Optical devices : Optical devices
(230.5160) Optical devices : Photodetectors
(230.5170) Optical devices : Photodiodes
(250.0250) Optoelectronics : Optoelectronics
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(250.1345) Optoelectronics : Avalanche photodiodes (APDs)

ToC Category:

Original Manuscript: November 13, 2013
Revised Manuscript: January 7, 2014
Manuscript Accepted: January 17, 2014
Published: January 29, 2014

Myung-Jae Lee, Jin-Sung Youn, Kang-Yeob Park, and Woo-Young Choi, "A fully-integrated 12.5-Gb/s 850-nm CMOS optical receiver based on a spatially-modulated avalanche photodetector," Opt. Express 22, 2511-2518 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006). [CrossRef]
  2. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009). [CrossRef]
  3. B. Jalali, S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006). [CrossRef]
  4. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006). [CrossRef]
  5. N. Izhaky, M. T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, M. J. Paniccia, “Development of CMOS-compatible integrated silicon photonics devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1688–1698 (2006). [CrossRef]
  6. R. Gaudino, D. Cárdenas, M. Bellec, B. Charbonnier, N. Evanno, P. Guignard, S. Meyer, A. Pizzinat, I. Möllers, D. Jäger, “Perspective in next-generation home networks-Toward optical solutions,” IEEE Commun. Mag. 48(2), 39–47 (2010). [CrossRef]
  7. O. Strobel, R. Rejeb, and J. Lubkoll, “Communication in automotive systems: principles, limits and new trends for vehicles, airplanes and vessels,” Int. Conf. Transparent Opt. Netw. 1–6 (2010). [CrossRef]
  8. C. L. Schow, F. E. Doany, A. V. Rylyakov, B. G. Lee, C. V. Jahnes, Y. H. Kwark, C. W. Baks, D. M. Kuchta, J. A. Kash, “A 24-channel, 300 Gb/s, 8.2 pJ/bit, full-duplex fiber-coupled optical transceiver module based on a single “holey” CMOS IC,” J. Lightwave Technol. 29(4), 542–553 (2011). [CrossRef]
  9. F. E. Doany, C. L. Schow, B. G. Lee, R. A. Budd, C. W. Baks, C. K. Tsang, J. U. Knickerbocker, R. Dangel, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, D. Bajkowski, F. Libsch, J. A. Kash, “Terabit/s-class optical PCB links incorporating 360-Gb/s bidirectional 850 nm parallel optical transceivers,” J. Lightwave Technol. 30(4), 560–571 (2012). [CrossRef]
  10. N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnect,” IEEE J. Quantum Electron. 45(4), 415–424 (2009). [CrossRef]
  11. I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, P. L. D. Chang, “Optical I/O technology for tera-scale computing,” IEEE J. Solid State Circuits 45(1), 235–248 (2010). [CrossRef]
  12. L. Dellmann, U. Drechsler, T. Morf, H. Rothuizen, R. Stutz, J. Weiss, M. Despont, “3D opto-electrical device stacking on CMOS,” Microelectron. Eng. 87(5–8), 1210–1212 (2010). [CrossRef]
  13. P. Duan, O. Raz, B. E. Smalbrugge, J. Duis, H. J. S. Dorren, “A novel 3D stacking method for Opto-electronic dies on CMOS ICs,” Opt. Express 20(26), B386–B392 (2012). [CrossRef] [PubMed]
  14. S. Radovanovic, A.-J. Annema, B. Nauta, “A 3-Gb/s optical detector in standard CMOS for 850-nm optical communication,” IEEE J. Solid State Circuits 40(8), 1706–1717 (2005). [CrossRef]
  15. W.-Z. Chen, S.-H. Huang, G.-W. Wu, C.-C. Liu, Y.-T. Huang, C.-F. Chiu, W.-H. Chang, Y.-Z. Juang, “A 3.125 Gbps CMOS fully integrated optical receiver with adaptive analog equalizer,” in Proc. IEEE Asian Solid-State Circuits Conf. 396–399 (2007).
  16. D. Lee, J. Han, G. Han, S. M. Park, “An 8.5-Gb/s fully integrated CMOS optoelectronic receiver using slop-detection adaptive equalizer,” IEEE J. Solid State Circuits 45(12), 2861–2873 (2010). [CrossRef]
  17. T. S. Kao, F. A. Musa, A. C. Carusone, “A 5-Gbit/s CMOS optical receiver with integrated spatially modulated light detector and equalization,” IEEE Trans. Circuits Syst. I, Reg. Pap. 57(11), 2844–2857 (2010).
  18. S.-H. Huang, W.-Z. Chen, Y.-W. Chang, Y.-T. Huang, “A 10-Gb/s OEIC with meshed spatially-modulated photo detector in 0.18-µm CMOS technology,” IEEE J. Solid State Circuits 46(5), 1158–1169 (2011). [CrossRef]
  19. W.-Z. Chen, S.-H. Huang, “A 2.5 Gbps CMOS fully integrated optical receiver with lateral PIN detector,” in Proc. Custom Integrated Circuits Conf. 293–296 (2007). [CrossRef]
  20. F. Tavernier, M. S. J. Steyaert, “High-speed optical receivers with integrated photodiode in 130 nm CMOS,” IEEE J. Solid State Circuits 44(10), 2856–2867 (2009). [CrossRef]
  21. J.-S. Youn, M.-J. Lee, K.-Y. Park, W.-Y. Choi, “10-Gb/s 850-nm CMOS OEIC receiver with a silicon avalanche photodetector,” IEEE J. Quantum Electron. 48(2), 229–236 (2012). [CrossRef]
  22. W.-K. Huang, Y.-C. Liu, Y.-M. Hsin, “A high-speed and high-responsivity photodiode in standard CMOS technology,” IEEE Photonics Technol. Lett. 19(4), 197–199 (2007). [CrossRef]
  23. K. Iiyama, H. Takamatsu, T. Maruyama, “Hole-injection-type and electron-injection-type silicon avalanche photodiodes fabricated by standard 0.18-µm CMOS process,” IEEE Photonics Technol. Lett. 22(12), 932–934 (2010). [CrossRef]
  24. H. Zimmermann, Integrated Silicon Optoelectronics, 2nd ed. (Springer, 2009).
  25. F.-P. Chou, G.-Y. Chen, C.-W. Wang, Y.-C. Liu, W.-K. Huang, Y.-M. Hsin, “Silicon photodiodes in standard CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 17(3), 730–740 (2011). [CrossRef]
  26. M.-J. Lee, W.-Y. Choi, “A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product,” Opt. Express 18(23), 24189–24194 (2010). [CrossRef] [PubMed]
  27. M.-J. Lee, W.-Y. Choi, “Area-dependent photodetection frequency response characterization of silicon avalanche photodetectors fabricated with standard CMOS technology,” IEEE Trans. Electron. Dev. 60(3), 998–1004 (2013). [CrossRef]
  28. M.-J. Lee, H. Rücker, W.-Y. Choi, “Effects of guard-ring structures on the performance of silicon avalanche photodetectors fabricated with standard CMOS technology,” IEEE Electron. Device Lett. 33(1), 80–82 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited