OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2528–2535

Demonstration of broad photonic crystal stop band in a freely-suspended microfiber perforated by an array of rectangular holes

Yang Yu, Wei Ding, Lin Gan, Zhi-Yuan Li, Qiang Luo, and Steve Andrews  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 2528-2535 (2014)
http://dx.doi.org/10.1364/OE.22.002528


View Full Text Article

Enhanced HTML    Acrobat PDF (1244 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is shown that photonic crystal (PhC) optical reflectors with reflectance in excess of 60% and fractional bandwidths greater than 10% can be fabricated by ion beam milling of fewer than ten periods of rectangular cross section through-holes in micron-scale tapered fibers. The optical characteristics agree well with numerical simulations when allowance is made for fabrication artefacts and we show that the radiation loss, which is partly determined by optical interference, can be suppressed by design. The freely-suspended devices are compact and robust and could form the basic building block of optical cavities and filters.

© 2014 Optical Society of America

OCIS Codes
(060.4005) Fiber optics and optical communications : Microstructured fibers
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Photonic Crystals

History
Original Manuscript: November 29, 2013
Revised Manuscript: January 20, 2014
Manuscript Accepted: January 20, 2014
Published: January 29, 2014

Citation
Yang Yu, Wei Ding, Lin Gan, Zhi-Yuan Li, Qiang Luo, and Steve Andrews, "Demonstration of broad photonic crystal stop band in a freely-suspended microfiber perforated by an array of rectangular holes," Opt. Express 22, 2528-2535 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-2528


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. St. J. Russell, J.-L. Archambault, L. Reekie, “Fibre gratings,” Phys. World 6, 41–46 (1993).
  2. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane,” Electron. Lett. 44(2), 115–116 (2008). [CrossRef]
  3. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997). [CrossRef]
  4. K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978). [CrossRef]
  5. J.-L. Archambault, L. Reekie, P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993). [CrossRef]
  6. W. Ding, S. R. Andrews, S. A. Maier, “Surface corrugation Bragg gratings on optical fiber tapers created via plasma etch postprocessing,” Opt. Lett. 32(17), 2499–2501 (2007). [CrossRef] [PubMed]
  7. Y. X. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. K. Yu, L. M. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett. 36(16), 3115–3117 (2011). [CrossRef] [PubMed]
  8. K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19(15), 14040–14050 (2011). [CrossRef] [PubMed]
  9. M. Ding, M. N. Zervas, G. Brambilla, “A compact broadband microfiber Bragg grating,” Opt. Express 19(16), 15621–15626 (2011). [CrossRef] [PubMed]
  10. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices - Part 1: Adiabaticity criteria,” IEE Proceedings-J 138, 343–354 (1991). [CrossRef]
  11. A. W. Snyder and J. D. Love, Optical Waveguide Theory, (Chapman and Hall, 1983).
  12. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997). [CrossRef]
  13. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the flow of light, 2nd Edition, (Princeton University, 2008).
  14. Z. Y. Li, L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046607 (2003). [CrossRef] [PubMed]
  15. M. Gnan, G. Bellanca, H. M. H. Chong, P. Bassi, R. M. De La Rue, “Modelling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38(1-3), 133–148 (2006). [CrossRef]
  16. W. Ding, R. J. Liu, Z. Y. Li, “Reducing radiation losses of one-dimensional photonic-crystal reflectors on a silica waveguide,” Opt. Express 20(27), 28641–28654 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited