OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2603–2608

Parallel femtosecond laser ablation with individually controlled intensity

Martti Silvennoinen, Jarno Kaakkunen, Kimmo Paivasaari, and Pasi Vahimaa  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2603-2608 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2408 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The use of computer generated holograms together with spatial light modulator (SLM) enable highly parallel laser micromachining. Usually SLM is used for splitting the original laser beam to desired number of beams with equal intensity. However, this technique also enables that the intensity of every beam can be controlled individually. Example of the hologram designing procedure for separation of the original beam to 400 beams with individually controlled intensity is presented. The proposed technique is demonstrated by femtosecond laser ablation of grayscale pictures so that grey scale of the pixel is addressed with corresponding beam intensity in the ablated picture.

© 2014 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.7090) Lasers and laser optics : Ultrafast lasers
(220.4000) Optical design and fabrication : Microstructure fabrication
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Laser Microfabrication

Original Manuscript: September 25, 2013
Revised Manuscript: December 12, 2013
Manuscript Accepted: December 16, 2013
Published: January 30, 2014

Martti Silvennoinen, Jarno Kaakkunen, Kimmo Paivasaari, and Pasi Vahimaa, "Parallel femtosecond laser ablation with individually controlled intensity," Opt. Express 22, 2603-2608 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Hayasaki, T. Sugimoto, A. Takita, N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005). [CrossRef]
  2. S. Hasegawa, Y. Hayasaki, N. Nishida, N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006). [CrossRef] [PubMed]
  3. S. Hasegawa, Y. Hayasaki, “Holographic Femtosecond Laser Processing with Multiplexed Phase Fresnel Lenses Displayed on a Liquid Crystal Spatial Light Modulator,” Opt. Rev. 14(4), 208–213 (2007). [CrossRef]
  4. Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using spatial light modulator,” Appl. Surf. Sci. 225, 2284–2289 (2008).
  5. M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, “Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram,” Appl. Phys. Lett. 93(4), 041116 (2008). [CrossRef]
  6. Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009). [CrossRef]
  7. R. J. Beck, J. P. Parry, W. N. MacPherson, A. Waddie, N. J. Weston, J. D. Shephard, D. P. Hand, “Application of cooled spatial light modulator for high power nanosecond laser micromachining,” Opt. Express 18(16), 17059–17065 (2010). [CrossRef] [PubMed]
  8. A. Jesacher, M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18(20), 21090–21099 (2010). [CrossRef] [PubMed]
  9. M. Silvennoinen, J. Kaakkunen, K. Paivasaari, P. Vahimaa, “Parallel microtructuring using femtosecond laser and spatial light modulator,” Phys. Proc. 41, 686–690 (2013).
  10. E. H. Waller, G. von Freymann, “Multi foci with diffraction limited resolution,” Opt. Express 21(18), 21708–21713 (2013). [CrossRef] [PubMed]
  11. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of phase from image diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).
  12. J. R. Fienup, “Phase retrieval algorithms: A comparison,” Appl. Opt. 21(15), 2758–2769 (1982). [CrossRef] [PubMed]
  13. F. Wyrowski, O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. 5(7), 1058–1065 (1988).
  14. S. Hasegawa, Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett. 34(1), 22–24 (2009). [CrossRef] [PubMed]
  15. S. Hasegawa, Y. Hayasaki, “Second-harmonic optimization of computer-generated hologram,” Opt. Lett. 36(15), 2943–2945 (2011). [CrossRef] [PubMed]
  16. A. Borowiec, M. MacKensey, G. C. Weatherly, H. K. Haugen, “Transmission and scanning electron microscopy studies of single femtosecond laser-pulse ablation in silicon,” Appl. Phys., A Mater. Sci. Process. 76(2), 201–207 (2003). [CrossRef]
  17. J. Bonse, S. Baudach, J. Gruger, W. Kautek, M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited