OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2620–2631

The impact of nonlinear losses in the silicon micro-ring cavities on CW pumping correlated photon pair generation

Yuan Guo, Wei Zhang, Ning Lv, Qiang Zhou, Yidong Huang, and Jiangde Peng  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2620-2631 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1045 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, 1.5μm correlated photon pairs are generated under continuous wave (CW) pumping in a silicon micro-ring cavity with a Q factor of 8.1 × 104. The ratio of coincidences to accidental coincidences (CAR) is up to 200 under a coincidence time bin width of 5ns. The experiment result of single side photon count shows that the generation rate does not increase as the square of the pump level due to the nonlinear losses in the cavity which reduce the Q factor and impact the field enhancement effect in the cavity under high pump level. Theoretical analysis shows that the photon pair generation rate in the cavity is proportional to the seventh power of the Q factor, which agrees well with the experiment result. It provides a way to analyze the performance of CW pumping correlated photon pair generation in silicon micro-ring cavities under high pump levels.

© 2014 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: October 24, 2013
Revised Manuscript: December 6, 2013
Manuscript Accepted: January 27, 2014
Published: January 30, 2014

Yuan Guo, Wei Zhang, Ning Lv, Qiang Zhou, Yidong Huang, and Jiangde Peng, "The impact of nonlinear losses in the silicon micro-ring cavities on CW pumping correlated photon pair generation," Opt. Express 22, 2620-2631 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14(25), 12388–12393 (2006). [CrossRef] [PubMed]
  2. Q. Lin, O. J. Painter, G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007). [CrossRef] [PubMed]
  3. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16(25), 20368–20373 (2008). [CrossRef] [PubMed]
  4. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, S. Itabashi, “Frequency and Polarization Characteristics of Correlated Photon-Pair Generation Using a Silicon Wire Waveguide,” IEEE J. Sel. Top. Quantum Electron. 16(1), 325–331 (2010). [CrossRef]
  5. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007). [CrossRef]
  6. Q. Lin, G. P. Agrawal, “Silicon waveguides for creating quantum-correlated photon pairs,” Opt. Lett. 31(21), 3140–3142 (2006). [CrossRef] [PubMed]
  7. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002). [CrossRef] [PubMed]
  8. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006). [CrossRef] [PubMed]
  9. D. G. Rabus, Z. Bian, A. Shakouri, “A GaInAsP-InP double-ring resonator coupled laser,” IEEE Photon. Technol. Lett. 17(9), 1770–1772 (2005). [CrossRef]
  10. E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013). [CrossRef]
  11. W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “A silicon-chip source of bright photon-pair comb.” (2012). arXiv preprint arXiv:1210.4455
  12. L. G. Helt, Z. Yang, M. Liscidini, J. E. Sipe, “Spontaneous four-wave mixing in microring resonators,” Opt. Lett. 35(18), 3006–3008 (2010). [CrossRef] [PubMed]
  13. A. C. Turner, M. A. Foster, A. L. Gaeta, M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008). [CrossRef] [PubMed]
  14. S. F. Preble, Q. Xu, M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1, 1293–1296 (2007).
  15. S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20(21), 23100–23107 (2012). [CrossRef] [PubMed]
  16. S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17(19), 16558–16570 (2009). [CrossRef] [PubMed]
  17. N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, G. T. Reed, “Free carrier lifetime modification for silicon waveguide based devices,” Opt. Express 16(24), 19779–19784 (2008). [CrossRef] [PubMed]
  18. S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon microring resonators,” Opt. Lett. 37(18), 3807–3809 (2012). [CrossRef] [PubMed]
  19. L. G. Helt, M. Liscidini, J. E. Sipe, “How does it scale? comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am. B 29(8), 2199–2212 (2012). [CrossRef]
  20. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine, “Microring Resonator Channel Dropping Filters,” J. Lightwave Technol. 15(6), 998–1005 (1997). [CrossRef]
  21. A. R. Motamedi, A. H. Nejadmalayeri, A. Khilo, F. X. Kärtner, E. P. Ippen, “Ultrafast nonlinear optical studies of silicon nanowaveguides,” Opt. Express 20(4), 4085–4101 (2012). [CrossRef] [PubMed]
  22. D. G. Rabus, Integrated ring resonators (Springer, Berlin, 2007).
  23. M. Soltani, Novel integrated silicon nanophotonic structures using ultra-high Q resonator, Ph.D. dissertation, Georgia Institute of Technology, 2009.
  24. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008). [CrossRef]
  25. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, P. T. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett. 25(8), 554–556 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited