OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2656–2664

Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy

Markus Brandstetter, Andreas Genner, Clemens Schwarzer, Elvis Mujagic, Gottfried Strasser, and Bernhard Lendl  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 2656-2664 (2014)
http://dx.doi.org/10.1364/OE.22.002656


View Full Text Article

Enhanced HTML    Acrobat PDF (2042 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the time-resolved comparison of pulsed 2nd order ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs) and pulsed 1st order ridge-type distributed feedback (DFB) QCLs using a step-scan Fourier transform infrared (FT-IR) spectrometer. Laser devices were part of QCL arrays and fabricated from the same laser material. Required grating periods were adjusted to account for the grating order. The step-scan technique provided a spectral resolution of 0.1 cm−1 and a time resolution of 2 ns. As a result, it was possible to gain information about the tuning behavior and potential mode-hops of the investigated lasers. Different cavity-lengths were compared, including 0.9 mm and 3.2 mm long ridge-type and 0.97 mm (circumference) ring-type cavities. RCSE QCLs were found to have improved emission properties in terms of line-stability, tuning rate and maximum emission time compared to ridge-type lasers.

© 2014 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 29, 2013
Revised Manuscript: January 2, 2014
Manuscript Accepted: January 6, 2014
Published: January 30, 2014

Citation
Markus Brandstetter, Andreas Genner, Clemens Schwarzer, Elvis Mujagic, Gottfried Strasser, and Bernhard Lendl, "Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy," Opt. Express 22, 2656-2664 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-2656


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994). [CrossRef] [PubMed]
  2. G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, C.-H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers,” Appl. Phys. Lett. 78(19), 2834–2836 (2001). [CrossRef]
  3. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997). [CrossRef]
  4. G. Hancock, “Applications of midinfrared quantum cascade lasers to spectroscopy,” Opt. Eng. 49(11), 111121 (2010). [CrossRef]
  5. R. F. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010). [CrossRef]
  6. J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010). [CrossRef]
  7. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23(3), 219–221 (1998). [CrossRef] [PubMed]
  8. M. T. McCulloch, E. L. Normand, N. Langford, G. Duxbury, D. A. Newnham, “Highly sensitive detection of trace gases using the time-resolved frequency downchirp from pulsed quantum-cascade lasers,” J. Opt. Soc. Am. B 20(8), 1761–1768 (2003). [CrossRef]
  9. C. Pflügl, W. Schrenk, S. Anders, G. Strasser, “Spectral dynamics of distributed feedback quantum cascade lasers,” Semicond. Sci. Technol. 19(4), S336–S338 (2004). [CrossRef]
  10. T. J. Johnson, A. Simon, J. M. Weil, G. W. Harris, “Applications of time-resolved step-scan and rapid-scan FT-IR spectroscopy : dynamics from ten seconds to ten nanoseconds,” Appl. Spectrosc. 47(9), 1376–1381 (1993). [CrossRef]
  11. W. Uhmann, A. Becker, C. Taran, F. Siebert, “Time-resolved FT-IR absorption spectroscopy using a step-scan interferometer,” Appl. Spectrosc. 45(3), 390–397 (1991). [CrossRef]
  12. J.-M. Melkonian, J. Petit, M. Raybaut, A. Godard, and M. Lefebvre, “Time-resolved spectral characterization of a pulsed external-cavity quantum cascade laser,” in Conference on Lasers and Electro-Optics 2012 (OSA, 2012), paper CF2K.4.
  13. B. Hinkov, Q. Yang, F. Fuchs, W. Bronner, K. Köhler, J. Wagner, “Time-resolved characterization of external-cavity quantum-cascade lasers,” Appl. Phys. Lett. 94(22), 221105 (2009). [CrossRef]
  14. M. Brandstetter, B. Lendl, “Tunable mid-infrared lasers in physical chemosensors towards the detection of physiologically relevant parameters in biofluids,” Sens. Actuators B Chem. 170, 189–195 (2012). [CrossRef]
  15. Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photonics Technol. Lett. 18(12), 1347–1349 (2006). [CrossRef]
  16. E. Mujagić, S. Schartner, L. K. Hoffmann, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, G. Strasser, “Grating-coupled surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(1), 011108 (2008). [CrossRef]
  17. E. Mujagić, M. Nobile, H. Detz, W. Schrenk, J. Chen, C. Gmachl, G. Strasser, “Ring cavity induced threshold reduction in single-mode surface emitting quantum cascade lasers,” Appl. Phys. Lett. 96(3), 031111 (2010). [CrossRef]
  18. H. Kogelnik, C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327 (1972). [CrossRef]
  19. N. Finger, E. Gornik, “Analysis of metallized-grating coupled twin-waveguide structures,” IEEE J. Quantum Electron. 35(5), 832–843 (1999). [CrossRef]
  20. J. Buus, “Mode selectivity in DFB lasers with cleaved facets,” Electron. Lett. 21(5), 179–180 (1985). [CrossRef]
  21. H. K. Lee, J. S. Yu, “Thermal effects in quantum cascade lasers at λ~4.6 μm under pulsed and continuous-wave modes,” Appl. Phys. B 106(3), 619–627 (2011). [CrossRef]
  22. E. Mujagić, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett. 98(14), 141101 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited