OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2681–2694

Electrically pumped hybrid plasmonic waveguide

Thamani Wijesinghe, Malin Premaratne, and Govind P. Agrawal  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 2681-2694 (2014)
http://dx.doi.org/10.1364/OE.22.002681


View Full Text Article

Enhanced HTML    Acrobat PDF (3794 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Active plasmonic waveguiding has become a key requirement for designing and implementing nanophotonic devices. We study theoretically the performance of an Au/GaSb-based, metal–insulator–semiconductor (MIS) structure acting as a hybrid electrically pumped waveguide with gain. The surface-plasmon polariton (SPP) mode supported by this configuration is analyzed in the third telecommunication window and discussed in detail. Changes in the effective mode index, confinement factor and effective mode area are illustrated for different core widths and layer thicknesses. Electrical behavior of the MIS junction is analyzed using a self-consistent numerical technique and used to study variations in the material and model gains within the semiconducting region of the device. Our results indicate the possibility of achieving low loss SPP propagation while maintaining a strong field confinement.

© 2014 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: November 11, 2013
Revised Manuscript: January 17, 2014
Manuscript Accepted: January 17, 2014
Published: January 30, 2014

Citation
Thamani Wijesinghe, Malin Premaratne, and Govind P. Agrawal, "Electrically pumped hybrid plasmonic waveguide," Opt. Express 22, 2681-2694 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-2681


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Kirchain, L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007). [CrossRef]
  2. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef] [PubMed]
  3. M. Premaratne, G. P. Agrawal, Light Propagation in Gain Media: Optical Amplifiers (Cambridge University, 2011). [CrossRef]
  4. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  5. B. Wang, G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004). [CrossRef] [PubMed]
  6. S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258, 295–299 (2006). [CrossRef]
  7. D. Handapangoda, I. D. Rukhlenko, M. Premaratne, C. Jagadish, “Optimization of gain–assisted waveguiding in metal–dielectric nanowires,” Opt. Lett. 35(24), 4190–4192 (2010). [CrossRef] [PubMed]
  8. I. B. Udagedara, I. D. Rukhlenko, M. Premaratne, “Complex–ω approach versus complex–k approach in description of gain–assisted SPP propagation along linear chains of metallic nano spheres,” Phys. Rev. B 83, 115451 (2011). [CrossRef]
  9. D. F. P. Pile, D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29(10), 1069–1071 (2004). [CrossRef] [PubMed]
  10. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005). [CrossRef]
  11. A. V. Krasavin, A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18(11), 11791–11799 (2010). [CrossRef] [PubMed]
  12. T. Holmgaard, S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007). [CrossRef]
  13. A. V. Krasavin, A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90(21), 211101 (2007). [CrossRef]
  14. D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, A. V. Zayats, “Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits,” Nano Lett. 12(5), 2459–2463 (2012). [CrossRef] [PubMed]
  15. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008). [CrossRef]
  16. D. X. Dai, S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009). [CrossRef] [PubMed]
  17. Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17(23), 21320–21325 (2009). [CrossRef] [PubMed]
  18. J. Zhang, L. Cai, W. Bai, Y. Xu, G. Song, “Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement,” Opt. Lett. 36(12), 2312–2314 (2011). [CrossRef] [PubMed]
  19. D. Dai, Y. Shi, S. He, L. Wosinski, L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express 19(14), 12925–12936 (2011). [CrossRef] [PubMed]
  20. J. Seidel, S. Grafstrom, L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005). [CrossRef] [PubMed]
  21. I. D. Leon, P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4, 382–388 (2010). [CrossRef]
  22. J. Grandidier, G. C. D. Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009). [CrossRef] [PubMed]
  23. X. Zhang, Y. Li, T. Li, S. Y. Lee, C. Feng, L. Wang, T. Mei, “Gain-assisted propagation of surface plasmon polaritons via electrically pumped quantum wells,” Opt. Lett. 35(18), 3075–3077 (2010). [CrossRef] [PubMed]
  24. D. Y. Fedyanin, A. V. Arsenin, “Surface plasmon polariton amplification in metal-semiconductor structures,” Opt. Express 19, 12524–12531 (2011). [CrossRef] [PubMed]
  25. D. Y. Fedyanin, “Toward an electrically pumped spaser,” Opt. Lett. 37(3), 404–406 (2012). [CrossRef] [PubMed]
  26. T. M. Wijesinghe, M. Premaratne, “Surface plasmon polaritons propagation through a Schottky junction: influence of the inversion layer,” IEEE Photonics J. 5(2), 4800216 (2013). [CrossRef]
  27. T. Wijesinghe, M. Premaratne, “Dispersion relation for surface plasmon polaritons on a schottky junction,” Opt. Express 20(7), 7151–7164 (2012). [CrossRef] [PubMed]
  28. R. F. Oulton, G. Bartal, D. F. P. Pile, X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys. 10(10), 105018 (2008). [CrossRef]
  29. S. L. Chuang, Physics of Photonic Devices, 2nd ed. (John Wiley, 2009).
  30. S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (John Wiley, 2006).
  31. M. A. Green, J. Shewchun, “Minority carrier effects upon small signal and steady-state properties of schottky diodes,” Solid State Electron., 16(10), 1141–1150 (1973). [CrossRef]
  32. K. Horio, H. Yanai, “Numerical modelling of heterojunctions including the thermionic emission mechanism at the heterojunction interface,” IEEE Trans. Electron. Dev. 37, 1093–1098 (1990). [CrossRef]
  33. M. S. Lundstrom, R. J. Schuelke, “Numerical analysis of heterostructure semiconductor devices,” IEEE Trans. Electron. Dev. 30, 1151–1159 (1983) [CrossRef]
  34. Z. M. Li, “Two-dimensional numerical simulation of semiconductor lasers,” Prog. Electromagn. Res. 11, 301–344 (1995).
  35. C. M. Snowden, Introduction to Semiconductor Device Modelling (World Scientific, 1998). [CrossRef]
  36. R. Millett, J. Wheeldon, T. Hall, H. Schriemer, “Towards modelling semiconductor heterojunctions,” in Proceedings of the COMSOL Users Conference, Boston, 2006.
  37. S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors (John Wiley, 1950).
  38. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  39. K. Banerjee, S. C. Lin, N. Srivastava, “Electrothermal engineering in the nanometer era: from devices and interconnects to circuits and systems,” in Proceedings of ASP-DAC (IEEE, 2006), pp. 223–230. [CrossRef]
  40. J. Darabi, K. Ekula, “Development of a chip-integrated micro cooling device,” Microelectr. J. 34(11), 1067–1074 (2003). [CrossRef]
  41. W. Nakwaski, “Dynamical thermal properties of stripe-geometry laser diodes,” IEEE Proc. Electron Dev. 131(3), 94 (1984).
  42. O. J. Martin, G. L. Bona, P Wolf, “Thermal behavior of visible AlGaInP-GaInP ridge laser diodes,” IEEE J. Quantum Electron. 28(11), 2582–2588 (1992). [CrossRef]
  43. S. Kameda, W. Carr, “Analysis of proposed MIS laser structures,” IEEE J. Quantum Electron 9(2), 374–378 (1973). [CrossRef]
  44. H. C. Card, B. L. Smith, “Green injection luminescence from forward-biased Au/GaP Schottky barriers,” J. Appl. Phys. 42(13), 5863–5865 (1971). [CrossRef]
  45. K. W. Nill, A. R. Calawa, T. C. Harman, J. N. Walpole, “Laser emission barriers on PbTe and PbSnTe,” Appl. Phys. Lett. 16(10), 375–377 (1970). [CrossRef]
  46. C. Sirtori, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, “Long-wavelength (λ≈ 811.5μm) semiconductor lasers with waveguides based on surface plasmons,” Opt. Lett. 23(17), 1366–1368 (1998). [CrossRef]
  47. A. Akbari, R. N. Tait, P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express 18(8), 8505–8514 (2010). [CrossRef] [PubMed]
  48. C. Wang, H. J. Qu, W. X. Chen, G. Z. Ran, H. Y. Yu, B. Niu, J. Q. Pan, W. Wang, “Polarization of the edge emission from Ag/InGaAsP Schottky plasmonic diode,” Appl. Phys. Lett. 102(6), 061112 (2013). [CrossRef]
  49. J. N. Walpole, K. W. Nill, “Capacitance-voltage characteristics of metal barriers on p PbTe and p InAs: Effects of the inversion layer,” J. Appl. Phys. 42(13), 5609–5617 (1971). [CrossRef]
  50. M. Alavi, D. K. Reinhard, C. C. W. Yu, “Minority-carrier injection in PtSi Schottky-barrier diodes at high current densities,” IEEE Trans. Electron Dev. 34(5), 1134–1140 (1987). [CrossRef]
  51. V. J. Sorger, Z. Ye, R. F. Oulton, Y. W. G. Bartal, X. Yin, X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011). [CrossRef]
  52. S. Belan, S. Vergeles, P. Vorobev, “Adjustable subwavelength localization in a hybrid plasmonic waveguide,” Opt. Express 21, 7427–7438 (2013). [CrossRef] [PubMed]
  53. E. Dulkeith, F. Xia, L. Schares, W. Green, Y. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14, 3853–3863 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited