OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2860–2867

Flexible-textured polydimethylsiloxane antireflection structure for enhancing omnidirectional photovoltaic performance of Cu(In,Ga)Se2 solar cells

Shou-Yi Kuo, Ming-Yang Hsieh, Hau-Vei Han, Fang-I Lai, Tsung-Yeh Chuang, Peichen Yu, Chien-Chung Lin, and Hao-Chung Kuo  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 2860-2867 (2014)
http://dx.doi.org/10.1364/OE.22.002860


View Full Text Article

Enhanced HTML    Acrobat PDF (1859 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Because of the Sun’s movement across the sky, broadband and omnidirectional light harvesting is a major development in photovoltaic technology. This study reports the fabrication and characterization of flexible-textured polydimethylsiloxane (PDMS) film on Cu(In,Ga)Se2 (CIGS) solar cells, which is one of the simplest and cheapest peel-off processes for fabricating a three-dimensional structure. A cell containing a textured PDMS film enhanced the short-circuit current density from 22.12 to 23.93 mA/cm2 in a simulated one-sun scenario. The omnidirectional antireflection of CIGS solar cells containing various PDMS films is also investigated. This study uses an angle-resolved reflectance spectroscope to investigate the omnidirectional and broadband optical properties of the proposed PDMS film. This improvement in light harvesting is attributable to the scattering of the PDMS film and the gradual refractive index profile between the PDMS microstructures and air. The flexible-textured PDMS film is suitable for creating an antireflective coating for a diverse range of photovoltaic devices.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.4760) Materials : Optical properties

ToC Category:
Thin Films

History
Original Manuscript: November 7, 2013
Revised Manuscript: January 10, 2014
Manuscript Accepted: January 10, 2014
Published: January 31, 2014

Citation
Shou-Yi Kuo, Ming-Yang Hsieh, Hau-Vei Han, Fang-I Lai, Tsung-Yeh Chuang, Peichen Yu, Chien-Chung Lin, and Hao-Chung Kuo, "Flexible-textured polydimethylsiloxane antireflection structure for enhancing omnidirectional photovoltaic performance of Cu(In,Ga)Se2 solar cells," Opt. Express 22, 2860-2867 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-2860


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Muthmann, A. Gordijn, “Amorphous silicon solar cells deposited with non-constant silane concentration,” Sol. Energy Mater. Sol. Cells 95(2), 573–578 (2011). [CrossRef]
  2. M. Kim, S. Sohn, S. Lee, “Reaction kinetics study of CdTe thin films during CdCl2 heat treatment,” Sol. Energy Mater. Sol. Cells 95(8), 2295–2301 (2011). [CrossRef]
  3. S. Chirilă, F. Buecheler, P. Pianezzi, C. Bloesch, A. R. Gretener, C. Uhl, L. Fella, J. Kranz, S. Perrenoud, R. Seyrling, S. Verma, Y. E. Nishiwaki, G. Romanyuk, Bilger, A. N. Tiwari, “Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films,” Nat. Mater. 10, 1 (2011).
  4. L. Zhang, Q. He, W. L. Jiang, F. F. Liu, C. J. Li, Y. Sun, “Effects of substrate temperature on the structural and electrical properties of Cu(In,Ga)Se2 thin films,” Sol. Energy Mater. Sol. Cells 93(1), 114–118 (2009). [CrossRef]
  5. EMPA, A new world record for solar cell efficiency, http://www.empa.ch/plugin/template/empa/3/131438/—/l=2 , (2013).
  6. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011). [CrossRef]
  7. M. A. Tsai, P. Yu, C. L. Chao, C. H. Chiu, H. C. Kuo, S. H. Lin, J. J. Huang, T. C. Lu, S. C. Wang, “Efficiency enhancement and beam shaping of GaN–InGaN vertical-injection light-emitting diodes via high-aspect-ratio nanorod arrays,” IEEE Photon. Technol. Lett. 21(4), 257–259 (2009). [CrossRef]
  8. Y. A. Chang, Z. Y. Li, H. C. Kuo, T. C. Lu, S. F. Yang, L. W. Lai, L. H. Lai, S. C. Wang, “Efficiency improvement of single-junction InGaP solar cells fabricated by a novel micro-hole array surface texture process,” Semicond. Sci. Technol. 24(8), 085007 (2009). [CrossRef]
  9. M. Y. Hsieh, S. Y. Kuo, H. V. Han, J. F. Yang, Y. K. Liao, F. I. Lai, H. C. Kuo, “Enhanced broadband and omnidirectional performance of Cu(In,Ga)Se2 solar cells with ZnO functional nanotree arrays,” Nanoscale 5(9), 3841–3846 (2013). [CrossRef] [PubMed]
  10. S. Y. Kuo, M. Y. Hsieh, H. V. Han, F. I. Lai, Y. L. Tsai, J. F. Yang, T. Y. Chuang, H. C. Kuo, “Dandelion-shaped nanostructures for enhancing omnidirectional photovoltaic performance,” Nanoscale 5(10), 4270–4276 (2013). [CrossRef] [PubMed]
  11. S. Chhajed, M. F. Schubert, J. K. Kim, E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008). [CrossRef]
  12. D. J. Aiken, “High performance anti-reflection coatings for broadband multi-junction solar cells,” Sol. Energy Mater. Sol. Cells 64(4), 393–404 (2000). [CrossRef]
  13. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8(11), 584–586 (1983). [CrossRef] [PubMed]
  14. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41(16), 3075–3083 (2002). [CrossRef] [PubMed]
  15. D. Poitras, J. A. Dobrowolski, “Toward perfect antireflection coatings. 2. Theory,” Appl. Opt. 43(6), 1286–1295 (2004). [CrossRef] [PubMed]
  16. J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009). [CrossRef] [PubMed]
  17. C. J. Ting, M. C. Huang, H. Y. Tsai, C. P. Chou, C. C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology 19(20), 205301 (2008). [CrossRef] [PubMed]
  18. B. Päivänranta, T. Saastamoinen, M. Kuittinen, “A wide-angle antireflection surface for the visible spectrum,” Nanotechnology 20(37), 375301 (2009). [CrossRef] [PubMed]
  19. Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009). [CrossRef]
  20. E. Oliva, F. Dimroth, A. W. Bett, “GaAs converters for high power densities of laser illumination,” Prog. Photovol. 16(4), 289–295 (2008). [CrossRef]
  21. O. Gunawan, K. Wang, B. Fallahazad, Y. Zhang, E. Tutuc, S. Guha, “High performance wire-array silicon solar cells,” Prog. Photovolt. Res. Appl. 19(3), 307–312 (2011). [CrossRef]
  22. H. Ng, J. Han, T. Yamada, P. Nguyen, Y. Chen, M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett. 4(7), 1247–1252 (2004). [CrossRef]
  23. M. Huang, C. Yang, Y. Chiou, R. Lee, “Fabrication of nanoporous antireflection surfaces on silicon,” Sol. Energy Mater. Sol. Cells 92(11), 1352–1357 (2008). [CrossRef]
  24. X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photonics Journal 3(3), 489–499 (2011). [CrossRef]
  25. X.-H. Li, P. Zhu, G. Liu, J. Zhang, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, N. Tansu, “Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed TiO microsphere arrays,” J. Display Technology 9(5), 324–332 (2013). [CrossRef]
  26. W. H. Koo, W. Youn, P. Zhu, X.-H. Li, N. Tansu, F. So, “Light extraction of organic light emitting diodes by defective hexagonal-close-packed array,” Adv. Funct. Mater. 22(16), 3454–3459 (2012). [CrossRef]
  27. Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express 17(16), 13747–13757 (2009). [CrossRef] [PubMed]
  28. K. Sato, M. Shikida, T. Yamashiro, K. Asaumi, Y. Iriye, M. Yamamoto, “Anisotropic etching rates of single-crystal silicon for TMAH water solution as a function of crystallographic orientation,” Sens. Actuators 73(1-2), 131–137 (1999). [CrossRef]
  29. J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. M. Mackie, H. Shen, “Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency,” Appl. Phys. Lett. 90(20), 203515 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited