OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2889–2896

Contrast enhancement using silica microspheres in coherent anti-Stokes Raman spectroscopic imaging

X. Huang, X. N. He, W. Xiong, Y. Gao, L. J Jiang, L. Liu, Y. S. Zhou, L. Jiang, J. F. Silvain, and Y. F. Lu  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 2889-2896 (2014)
http://dx.doi.org/10.1364/OE.22.002889


View Full Text Article

Enhanced HTML    Acrobat PDF (3839 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coherent anti-Stokes Raman scattering (CARS) microscopy is a powerful imaging technique that can provide chemical information of organic and nonorganic materials through vibrational spectroscopy. However, its contrast is not sufficient for monitoring thin film materials. In this study, silica microspheres were employed for enhancing the signal contrast in CARS imaging. One layer of optically transparent silica microspheres was self-assembled onto polymer grating samples to enhance the CARS signals. The highest contrast enhancement factor of 12.5 was achieved using 6.1-μm-diameter microspheres. Finite-difference time-domain method (FDTD) simulation was conducted to simulate the contrast enhancement with silica microspheres of different diameters.

© 2014 Optical Society of America

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Spectroscopy

History
Original Manuscript: November 12, 2013
Revised Manuscript: January 23, 2014
Manuscript Accepted: January 27, 2014
Published: January 31, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Citation
X. Huang, X. N. He, W. Xiong, Y. Gao, L. J Jiang, L. Liu, Y. S. Zhou, L. Jiang, J. F. Silvain, and Y. F. Lu, "Contrast enhancement using silica microspheres in coherent anti-Stokes Raman spectroscopic imaging," Opt. Express 22, 2889-2896 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-2889


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. L. Evans, X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008). [CrossRef] [PubMed]
  2. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U. S. A. 102(46), 16807–16812 (2005). [CrossRef] [PubMed]
  3. G. W. H. Wurpel, J. M. Schins, M. Müller, “Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 27(13), 1093–1095 (2002). [CrossRef] [PubMed]
  4. X. S. Xie, J. Yu, W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006). [CrossRef] [PubMed]
  5. T. B. Huff, Y. Z. Shi, W. J. Sun, W. Wu, R. Shi, J. X. Cheng, “Real-time CARS imaging reveals a calpain-dependent rathway for paranodal myelin retraction during high-frequency stimulation,” PLoS ONE 6, e17176 (2011).
  6. R. F. Begley, A. B. Harvey, R. L. Byer, “Coherent anti‐Stokes Raman spectroscopy,” Appl. Phys. Lett. 25(7), 387–390 (1974). [CrossRef]
  7. C. L. Evans, E. O. Potma, X. S. Xie, “Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett. 29(24), 2923–2925 (2004). [CrossRef] [PubMed]
  8. F. Ganikhanov, C. L. Evans, B. G. Saar, X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006). [CrossRef] [PubMed]
  9. A. Zumbusch, G. R. Holtom, X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999). [CrossRef]
  10. M. Hashimoto, T. Araki, S. Kawata, “Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration,” Opt. Lett. 25(24), 1768–1770 (2000). [CrossRef] [PubMed]
  11. S. H. Parekh, Y. J. Lee, K. A. Aamer, M. T. Cicerone, “Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy,” Biophys. J. 99(8), 2695–2704 (2010). [CrossRef] [PubMed]
  12. T. T. Le, H. M. Duren, M. N. Slipchenko, C. D. Hu, J. X. Cheng, “Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans,” J. Lipid Res. 51(3), 672–677 (2010). [CrossRef] [PubMed]
  13. X. L. Nan, J. X. Cheng, X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003). [CrossRef] [PubMed]
  14. X. N. He, J. Allen, P. N. Black, T. Baldacchini, X. Huang, H. Huang, L. Jiang, Y. F. Lu, “Coherent anti-Stokes Raman scattering and spontaneous Raman spectroscopy and microscopy of microalgae with nitrogen depletion,” Biomed. Opt. Express 3(11), 2896–2906 (2012). [CrossRef] [PubMed]
  15. K. König, H. Liang, M. W. Berns, B. J. Tromberg, “Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21(14), 1090–1092 (1996). [CrossRef] [PubMed]
  16. Y. Fu, H. Wang, R. Shi, J. X. Cheng, “Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,” Opt. Express 14(9), 3942–3951 (2006). [CrossRef] [PubMed]
  17. E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004). [CrossRef]
  18. H. Kano, H. Hamaguchi, “Ultrabroadband (>2500 cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005). [CrossRef]
  19. G. W. H. Wurpel, J. M. Schins, M. Müller, “Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 27(13), 1093–1095 (2002). [CrossRef] [PubMed]
  20. J. X. Cheng, A. Volkmer, L. D. Book, X. S. Xie, “Multiplex coherent anti-Stokes Raman scattering microscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002). [CrossRef]
  21. W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. Mahjouri-Samani, L. Jiang, T. Baldacchini, Y. F. Lu, “Simultaneous additive and subtractive three-dimensional micro/nano-fabrication using integrated two-photon polymerization and multi-photon ablation,” Light Sci. Appl. 1, e6 (2012).
  22. H. Wang, K. K. Mendu, Y. F. Lu, J. Shi, D. R. Alexander, D. W. Doerr, “Laser-assisted fabrication of 3-D structures on polymer film,” J. Laser Micro Nanoeng. 1(2), 106–110 (2006). [CrossRef]
  23. Z. B. Wang, W. Guo, L. Li, B. Luk’yangchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011).
  24. K. J. Yi, H. Wang, Y. F. Lu, Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101(6), 063528 (2007). [CrossRef]
  25. Z. G. Chen, A. Taflove, V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004). [CrossRef] [PubMed]
  26. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited