OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2897–2909

Field analysis of electro-optic probes for minimally invasive microwave sampling

Dong-Joon Lee, Jae-Yong Kwon, and No-Weon Kang  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2897-2909 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2251 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically and experimentally investigate the field invasiveness of microwave signals using an electro-optic technique. The distortion of the standing wave voltage and pulse waveform probed by the electro-optic technique is explored through both minimally invasive external and non-invasive internal sensing configurations. First, we analyzed the continuous wave microwave field imaging on a millimeter- scale coaxial transmission line using a highly accurate and stable electro- optic scanning system. The electric field images from the microwave device are attained virtually non-invasively using a miniaturized fiber-coupled electro-optic probe. The accuracy of the field imaging associated with various probe styles is investigated by numerical analysis and experiment. Then, we analyzed the waveform of the coaxial transmission line up to 50 GHz using a pulsed electro-optic system with an external probe set. Finally, the invasive analysis was extended to the sub-millimeter-scale on-wafer coplanar waveguides, where the voltage waveforms are measured using a minimally invasive external probe as well as an internal wafer probe for non-invasive sampling.

© 2014 Optical Society of America

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(350.4010) Other areas of optics : Microwaves
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:

Original Manuscript: November 25, 2013
Revised Manuscript: January 12, 2014
Manuscript Accepted: January 13, 2014
Published: January 31, 2014

Dong-Joon Lee, Jae-Yong Kwon, and No-Weon Kang, "Field analysis of electro-optic probes for minimally invasive microwave sampling," Opt. Express 22, 2897-2909 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Yang, G. David, S. Robertson, J. F. Whitaker, L. P. B. Katehi, “Electro-optic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microw. Theory Tech. 46(12), 2338–2343 (1998). [CrossRef]
  2. A. Yariv and P. Yeh, Optical waves in crystals (Wiley, 1984) Chap. 8.
  3. D. J. Lee, J. F. Whitaker, “An optical-fiber-scale electro-optic probe for minimally invasive high-frequency field sensing,” Opt. Express 16(26), 21587–21597 (2008). [CrossRef] [PubMed]
  4. D. J. Lee, N. W. Kang, J. H. Choi, J. Y. Kim, J. F. Whitaker, “Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing,” Sensors (Basel) 11(12), 806–824 (2011). [CrossRef] [PubMed]
  5. P. Jarrige, N. Ticaud, S. Kohler, R. P. O’Connor, L. Duvillaret, G. Gaborit, D. A. Cormos, P. Leveque, “Electrooptic probe adapted for bioelectromagnetic experimental investigations,” IEEE Trans. Instrum. Meas. 61(7), 2051–2058 (2012). [CrossRef]
  6. H. Togo, N. Shimizu, T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron. E90-C(2), 436–442 (2007). [CrossRef]
  7. A. Garzarella, S. B. Qadri, D. H. Wu, “Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94(22), 221113 (2009). [CrossRef]
  8. H. Jamshidifar, G. Spickermann, H. Schafer, P. H. Bolivar, “200-GHz bandwidth on wafer characterization of CMOS nonlinear transmission line using electro-optic sampling,” Microw. Opt. Technol. Lett. 54(8), 1858–1862 (2012). [CrossRef]
  9. D. J. Lee, J. Y. Kwon, N. W. Kang, J. G. Lee, J. F. Whitaker, “Vector-stabilized reactive near-field imaging system,” IEEE Trans. Instrum. Meas. 60(7), 2702–2708 (2011). [CrossRef]
  10. D. J. Lee, J. Y. Kwon, J. G. Lee, “Spectro-temporal mismatch analysis of a transmission line based on on-wafer optical sampling,” Prog. Electromagn. Res. Lett. 30, 153–162 (2012). [CrossRef]
  11. S. Seitz, M. Bieler, G. Hein, K. Pierz, U. Siegner, F. J. Schmückle, W. Heinrich, “Characterization of an external electro-optic sampling probe: Influence of probe height on distortion of measured voltage pulses,” J. Appl. Phys. 100(11), 113124 (2006). [CrossRef]
  12. H. Fuser, S. Eichstadt, K. Baaske, C. Elster, K. Kuhlmann, R. Judaschke, K. Pierz, M. Bieler, “Optoelectronic time-domain characterization of a 100 GHz sampling oscilloscope,” Meas. Sci. Technol. 23(2), 025201 (2012). [CrossRef]
  13. D. F. Williams, P. D. Hale, T. S. Clement, J. M. Morgan, “Calibrated 200-GHz waveform measurement,” IEEE Trans. Microw. Theory Tech. 53(4), 1384–1389 (2005). [CrossRef]
  14. M. Bieler, H. Fuser, “Realization of an ultra-broadband voltage pulse standard utilizing time-domain optoelectronic techniques,” Proc. SPIE 8624, 862417 (2013). [CrossRef]
  15. M. Bieler, K. Pierz, U. Siegner, “Simultaneous generation and detection of ultrashort voltage pulses in low-temperature grown GaAs with below-bandgap laser pulses,” Appl. Phys. Lett. 94(5), 051108 (2009). [CrossRef]
  16. N. I. Dib, M. G. Gupta, G. E. Ponchak, L. P. B. Katehi, “Characterization of asymmetric coplanar waveguide discontinuities,” IEEE Trans. Microw. Theory Tech. 41(9), 1549–1558 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3779 KB)     
» Media 2: AVI (3816 KB)     
» Media 3: AVI (3880 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited