OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2933–2947

GPU accelerated toolbox for real-time beam-shaping in multimode fibres

M. Plöschner, B. Straka, K. Dholakia, and T. Čižmár  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2933-2947 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3650 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a GPU accelerated toolbox for shaping the light propagation through multimode fibre using a spatial light modulator (SLM). The light is modulated before being coupled to the proximal end of the fibre in order to achieve arbitrary light patterns at the distal end of the fibre. First, the toolbox optimises the acquisition time of the transformation matrix of the fibre by synchronous operation of CCD and SLM. Second, it uses the acquired transformation matrix retained within the GPU memory to design, in real-time, the desired holographic mask for on-the-fly modulation of the output light field. We demonstrate the functionality of the toolbox by acquiring the transformation matrix at the maximum refresh rate of the SLM - 204Hz, and using it to display an on-demand oriented cube, at the distal end of the fibre. The user-controlled orientation of the cube and the corresponding holographic mask are obtained in 20ms intervals. Deleterious interference effects between the neighbouring points are eliminated by incorporating an acousto-optic deflector (AOD) into the system. We remark that the usage of the toolbox is not limited to multimode fibres and can be readily used to acquire transformation matrix and implement beam-shaping in any other linear optical system.

© 2014 Optical Society of America

OCIS Codes
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(090.1000) Holography : Aberration compensation
(090.1760) Holography : Computer holography

ToC Category:
Fiber Optics

Original Manuscript: November 29, 2013
Manuscript Accepted: December 19, 2013
Published: January 31, 2014

Virtual Issues
February 28, 2014 Spotlight on Optics

M. Plöschner, B. Straka, K. Dholakia, and T. Čižmár, "GPU accelerated toolbox for real-time beam-shaping in multimode fibres," Opt. Express 22, 2933-2947 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. J. Thompson, C. Paterson, M. A. Neil, C. Dunsby, P. M. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett. 36, 1707–1709 (2011). [CrossRef] [PubMed]
  2. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30, 2272–2274 (2005). [CrossRef] [PubMed]
  3. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005). [CrossRef] [PubMed]
  4. R. Di Leonardo, S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19, 247–254 (2011). [CrossRef] [PubMed]
  5. T. Čižmár, K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19, 18871–18884 (2011). [CrossRef] [PubMed]
  6. T. Čižmár, K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012). [CrossRef] [PubMed]
  7. I. N. Papadopoulos, S. Farahi, C. Moser, D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583–10590 (2012). [CrossRef] [PubMed]
  8. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109, 203901 (2012). [CrossRef] [PubMed]
  9. I. N. Papadopoulos, S. Farahi, C. Moser, D. Psaltis, “Increasing the imaging capabilities of multimode fibers by exploiting theproperties of highly scattering media,” Opt. Lett. 38, 2776–2778 (2013). [CrossRef] [PubMed]
  10. I. N. Papadopoulos, S. Farahi, C. Moser, D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4, 260–270 (2013). [CrossRef] [PubMed]
  11. R. Nasiri, Mahalati, R. Y. Gu, J. M. Kahn, “Resolution limits for imaging through multi-mode fiber,” Opt. Express 21, 1656–1668 (2013). [CrossRef]
  12. Y. Choi, C. Yoon, M. Kim, J. Yang, W. Choi, “Disorder-mediated enhancement of fiber numerical aperture,” Opt. Lett. 38, 2253–2255 (2013). [CrossRef] [PubMed]
  13. S. Bianchi, R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12, 635–639 (2012). [CrossRef]
  14. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010). [CrossRef] [PubMed]
  15. A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express 21, 12881–12887 (2013). [CrossRef] [PubMed]
  16. D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012). [CrossRef] [PubMed]
  17. M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express 19, 2989–2995 (2011). [CrossRef] [PubMed]
  18. D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express 17, 22718–22725 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2137 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited