OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2973–2988

Fluorescence spectral correlation spectroscopy (FSCS) for probes with highly overlapping emission spectra

Aleš Benda, Peter Kapusta, Martin Hof, and Katharina Gaus  »View Author Affiliations

Optics Express, Vol. 22, Issue 3, pp. 2973-2988 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1051 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a fluorescence correlation spectroscopy (FCS) approach to obtain spectral cross-talk free auto- and cross-correlation functions for probes with highly overlapping emission spectra. Confocal microscopes with either a hyperspectral EM-CCD or six-channel PMT array spectral detection were used, followed by a photon filtering correlation approach that results in spectral unmixing. The method is highly sensitive and can distinguish between Atto488 and Oregon Green 488 signals so that auto-correlation curves can be fitted without the need for cross-talk correction. We also applied the approach to the membrane dye Laurdan whose emission is dependent on the lipid order within the bilayer. With fluorescence spectral correlation spectroscopy (FSCS), we could obtain spectral cross-talk free auto- and cross-correlation functions corresponding to Laurdan located in liquid ordered and liquid disordered phases.

© 2014 Optical Society of America

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(180.1790) Microscopy : Confocal microscopy
(300.2530) Spectroscopy : Fluorescence, laser-induced
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:

Original Manuscript: January 20, 2014
Manuscript Accepted: January 20, 2014
Published: January 31, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Aleš Benda, Peter Kapusta, Martin Hof, and Katharina Gaus, "Fluorescence spectral correlation spectroscopy (FSCS) for probes with highly overlapping emission spectra," Opt. Express 22, 2973-2988 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. L. Elson, “Fluorescence correlation spectroscopy: past, present, future,” Biophys. J. 101(12), 2855–2870 (2011). [CrossRef] [PubMed]
  2. Y. Tian, M. M. Martinez, D. Pappas, “Fluorescence correlation spectroscopy: a review of biochemical and microfluidic applications,” Appl. Spectrosc. 65(4), 115A–124A (2011). [CrossRef] [PubMed]
  3. P. Schwille, F. J. Meyer-Almes, R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J. 72(4), 1878–1886 (1997). [CrossRef] [PubMed]
  4. H. Park, C. Pack, M. Kinjo, B. K. Kaang, “In vivo quantitative analysis of PKA subunit interaction and cAMP level by dual color fluorescence cross correlation spectroscopy,” Mol. Cells 26(1), 87–92 (2008). [PubMed]
  5. K. G. Heinze, A. Koltermann, P. Schwille, “Simultaneous two-photon excitation of distinct labels for dual-color fluorescence crosscorrelation analysis,” Proc. Natl. Acad. Sci. U.S.A. 97(19), 10377–10382 (2000). [CrossRef] [PubMed]
  6. K. Bacia, Z. Petrášek, P. Schwille, “Correcting for spectral cross-talk in dual-color fluorescence cross-correlation spectroscopy,” ChemPhysChem 13(5), 1221–1231 (2012). [CrossRef] [PubMed]
  7. B. K. Müller, E. Zaychikov, C. Bräuchle, D. C. Lamb, “Pulsed interleaved excitation,” Biophys. J. 89(5), 3508–3522 (2005). [CrossRef] [PubMed]
  8. M. Burkhardt, K. G. Heinze, P. Schwille, “Four-color fluorescence correlation spectroscopy realized in a grating-based detection platform,” Opt. Lett. 30(17), 2266–2268 (2005). [CrossRef] [PubMed]
  9. M. J. Previte, S. Pelet, K. H. Kim, C. Buehler, P. T. So, “Spectrally resolved fluorescence correlation spectroscopy based on global analysis,” Anal. Chem. 80(9), 3277–3284 (2008). [CrossRef] [PubMed]
  10. F. Bestvater, Z. Seghiri, M. S. Kang, N. Gröner, J. Y. Lee, K. B. Im, M. Wachsmuth, “EMCCD-based spectrally resolved fluorescence correlation spectroscopy,” Opt. Express 18(23), 23818–23828 (2010). [CrossRef] [PubMed]
  11. M. Böhmer, M. Wahl, H.-J. Rahn, R. Erdmann, J. Enderlein, “Time-resolved fluorescence correlation spectroscopy,” Chem. Phys. Lett. 353(5-6), 439–445 (2002). [CrossRef]
  12. P. Kapusta, M. Wahl, A. Benda, M. Hof, J. Enderlein, “Fluorescence lifetime correlation spectroscopy,” J. Fluoresc. 17(1), 43–48 (2006). [CrossRef] [PubMed]
  13. P. Kapusta, R. Macháň, A. Benda, M. Hof, “Fluorescence lifetime correlation spectroscopy (FLCS): concepts, applications and outlook,” Int. J. Mol. Sci. 13(12), 12890–12910 (2012). [CrossRef] [PubMed]
  14. J. Humpolíčková, A. Benda, R. Macháň, J. Enderlein, M. Hof, “Dynamic saturation optical microscopy: employing dark-state formation kinetics for resolution enhancement,” Phys. Chem. Chem. Phys. 12(39), 12457–12465 (2010). [CrossRef] [PubMed]
  15. J. Humpolícková, A. Benda, J. Enderlein, “Optical saturation as a versatile tool to enhance resolution in confocal microscopy,” Biophys. J. 97(9), 2623–2629 (2009). [CrossRef] [PubMed]
  16. L. Beranová, J. Humpolíčková, J. Sýkora, A. Benda, L. Cwiklik, P. Jurkiewicz, G. Gröbner, M. Hof, “Effect of heavy water on phospholipid membranes: experimental confirmation of molecular dynamics simulations,” Phys. Chem. Chem. Phys. 14(42), 14516–14522 (2012). [CrossRef] [PubMed]
  17. A. G. Basden, C. A. Haniff, C. D. Mackay, “Photon counting strategies with low-light-level CCDs,” Mon. Not. R. Astron. Soc. 345(3), 985–991 (2003). [CrossRef]
  18. O. Daigle, C. Carignan, S. Blais-Ouellette, “Faint flux performance of an EMCCD,” Proc. SPIE 6276, 62761F (2006). [CrossRef]
  19. J. R. Unruh, E. Gratton, “Analysis of molecular concentration and brightness from fluorescence fluctuation data with an electron multiplied CCD camera,” Biophys. J. 95(11), 5385–5398 (2008). [CrossRef] [PubMed]
  20. J. Humpolícková, L. Beranová, M. Stĕpánek, A. Benda, K. Procházka, M. Hof, “Fluorescence lifetime correlation spectroscopy reveals compaction mechanism of 10 and 49 kbp DNA and differences between polycation and cationic surfactant,” J. Phys. Chem. B 112(51), 16823–16829 (2008). [CrossRef] [PubMed]
  21. A. Benda, “Spectral fluorescence correlation spectroscopy with EM-CCD camera,” presented at 15th International Workshop on “Single Molecule Spectroscopy and Ultrasensitive Analysis in the Life Sciences”, Berlin, Germany, 15–18 Sept. 2009.
  22. A. Benda, “Spectral fluorescence correlation spectroscopy with EM-CCD camera,” presented at Methods and Applications in Fluorescence 11, Budapest, Hungary, 6–9 Sept. 2009.
  23. B. Kannan, J. Y. Har, P. Liu, I. Maruyama, J. L. Ding, T. Wohland, “Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy,” Anal. Chem. 78(10), 3444–3451 (2006). [CrossRef] [PubMed]
  24. M. Burkhardt, P. Schwille, “Electron multiplying CCD based detection for spatially resolved fluorescence correlation spectroscopy,” Opt. Express 14(12), 5013–5020 (2006). [CrossRef] [PubMed]
  25. A. S. Klymchenko, Y. Mely, “Fluorescent environment-sensitive dyes as reporters of biomolecular interactions,” Prog. Mol. Biol. Transl. Sci. 113, 35–58 (2013). [CrossRef] [PubMed]
  26. K. Gaus, T. Zech, T. Harder, “Visualizing membrane microdomains by Laurdan 2-photon microscopy,” Mol. Membr. Biol. 23(1), 41–48 (2006). [CrossRef] [PubMed]
  27. T. Parasassi, F. Conti, E. Gratton, “Fluorophores in a polar medium: time dependence of emission spectra detected by multifrequency phase and modulation fluorometry,” Cell. Mol. Biol. 32(1), 99–102 (1986). [PubMed]
  28. L. A. Bagatolli, T. Parasassi, G. D. Fidelio, E. Gratton, “A model for the interaction of 6-lauroyl-2-(N,N-dimethylamino)naphthalene with lipid environments: implications for spectral properties,” Photochem. Photobiol. 70(4), 557–564 (1999). [CrossRef] [PubMed]
  29. P. Jurkiewicz, L. Cwiklik, P. Jungwirth, M. Hof, “Lipid hydration and mobility: an interplay between fluorescence solvent relaxation experiments and molecular dynamics simulations,” Biochimie 94(1), 26–32 (2012). [CrossRef] [PubMed]
  30. D. M. Owen, C. Rentero, A. Magenau, A. Abu-Siniyeh, K. Gaus, “Quantitative imaging of membrane lipid order in cells and organisms,” Nat. Protoc. 7(1), 24–35 (2011). [CrossRef] [PubMed]
  31. P. Jurkiewicz, J. Sýkora, A. Olzyńska, J. Humpolícková, M. Hof, “Solvent relaxation in phospholipid bilayers: principles and recent applications,” J. Fluoresc. 15(6), 883–894 (2005). [CrossRef] [PubMed]
  32. T. Parasassi, E. Gratton, H. Zajicek, M. Levi, W. Yu, “Detecting membrane lipid microdomains by two-photon fluorescence microscopy,” IEEE Eng. Med. Biol. Mag. 18(5), 92–99 (1999). [CrossRef] [PubMed]
  33. N. Kahya, D. Scherfeld, K. Bacia, B. Poolman, P. Schwille, “Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy,” J. Biol. Chem. 278(30), 28109–28115 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited