OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 3747–3753

High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures

Jie Shu, Weilu Gao, Kimberly Reichel, Daniel Nickel, Jason Dominguez, Igal Brener, Daniel M. Mittleman, and Qianfan Xu  »View Author Affiliations


Optics Express, Vol. 22, Issue 4, pp. 3747-3753 (2014)
http://dx.doi.org/10.1364/OE.22.003747


View Full Text Article

Enhanced HTML    Acrobat PDF (1153 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate a polarization-independent terahertz Fano resonance with extraordinary transmission when light passes through two concentric subwavelength ring apertures in the metal film. The Fano resonance is enabled by the coupling between a high-Q dark mode and a low-Q bright mode. We find the Q factor of the dark mode ranges from 23 to 40, which is 3~6 times higher than Q of bright mode. We show the Fano resonance can be tuned by varying the geometry and dimension of the structures. We also demonstrate a polarization dependent Fano resonance in a modified structure of concentric ring apertures.

© 2014 Optical Society of America

OCIS Codes
(120.7000) Instrumentation, measurement, and metrology : Transmission
(260.5740) Physical optics : Resonance
(300.6495) Spectroscopy : Spectroscopy, teraherz
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Terahertz Optics

History
Original Manuscript: December 9, 2013
Revised Manuscript: January 30, 2014
Manuscript Accepted: January 31, 2014
Published: February 10, 2014

Citation
Jie Shu, Weilu Gao, Kimberly Reichel, Daniel Nickel, Jason Dominguez, Igal Brener, Daniel M. Mittleman, and Qianfan Xu, "High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures," Opt. Express 22, 3747-3753 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-4-3747


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Withayachumnankul, H. Lin, K. Serita, C. M. Shah, S. Sriram, M. Bhaskaran, M. Tonouchi, C. Fumeaux, D. Abbott, “Sub-diffraction thin-film sensing with planar terahertz metamaterials,” Opt. Express 20(3), 3345–3352 (2012). [CrossRef] [PubMed]
  2. C. Debus, P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007). [CrossRef]
  3. N. Soltani, É. Lheurette, D. Lippens, “Wood anomaly transmission enhancement in fishnet-based metamaterials at terahertz frequencies,” J. Appl. Phys. 112(12), 124509 (2012). [CrossRef]
  4. H.-T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16(11), 7641–7648 (2008). [CrossRef] [PubMed]
  5. M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, D. S. Kim, “Active Terahertz Nanoantennas Based on VO2 Phase Transition,” Nano Lett. 10(6), 2064–2068 (2010). [CrossRef] [PubMed]
  6. E. Hendry, M. J. Lockyear, J. Gómez Rivas, L. Kuipers, M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007). [CrossRef]
  7. J. Shu, C. Qiu, V. Astley, D. Nickel, D. M. Mittleman, Q. Xu, “High-contrast terahertz modulator based on extraordinary transmission through a ring aperture,” Opt. Express 19(27), 26666–26671 (2011). [CrossRef] [PubMed]
  8. R. Singh, I. A. I. Al-Naib, M. Koch, W. Zhang, “Asymmetric planar terahertz metamaterials,” Opt. Express 18(12), 13044–13050 (2010). [CrossRef] [PubMed]
  9. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007). [CrossRef] [PubMed]
  10. R. Singh, I. A. I. Al-Naib, M. Koch, W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011). [CrossRef] [PubMed]
  11. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102(5), 053901 (2009). [CrossRef] [PubMed]
  12. S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008). [CrossRef] [PubMed]
  13. H.-R. Park, Y.-M. Bahk, K. J. Ahn, Q.-H. Park, D.-S. Kim, L. Martín-Moreno, F. J. García-Vidal, J. Bravo-Abad, “Controlling Terahertz Radiation with Nanoscale Metal Barriers Embedded in Nano Slot Antennas,” ACS Nano 5(10), 8340–8345 (2011). [CrossRef] [PubMed]
  14. Y.-M. Bahk, J.-W. Choi, J. Kyoung, H.-R. Park, K. J. Ahn, D.-S. Kim, “Selective enhanced resonances of two asymmetric terahertz nano resonators,” Opt. Express 20(23), 25644–25653 (2012). [CrossRef] [PubMed]
  15. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11(1), 69–75 (2011). [CrossRef] [PubMed]
  16. A. Artar, A. A. Yanik, H. Altug, “Multispectral Plasmon Induced Transparency in Coupled Meta-Atoms,” Nano Lett. 11(4), 1685–1689 (2011). [CrossRef] [PubMed]
  17. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010). [CrossRef] [PubMed]
  18. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010). [CrossRef] [PubMed]
  19. Y. Zhang, T. Q. Jia, H. M. Zhang, Z. Z. Xu, “Fano resonances in disk-ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode,” Opt. Lett. 37(23), 4919–4921 (2012). [CrossRef] [PubMed]
  20. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett. 8(11), 3983–3988 (2008). [CrossRef] [PubMed]
  21. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009). [CrossRef]
  22. Z.-G. Dong, M.-X. Xu, S.-Y. Lei, H. Liu, T. Li, F.-M. Wang, S.-N. Zhu, “Negative refraction with magnetic resonance in a metallic double-ring metamaterial,” Appl. Phys. Lett. 92(6), 064101 (2008). [CrossRef]
  23. S. W. Yu, J. H. Shi, Z. Zhu, R. Liu, C. Y. Guan, “Multi-peak electromagnetically induced transparency in concentric multiple-ring metamaterials,” J. Opt. 15(7), 075103 (2013). [CrossRef]
  24. Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, S. A. Maier, “Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities,” ACS Nano 4(3), 1664–1670 (2010). [CrossRef] [PubMed]
  25. J. Kim, R. Soref, W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express 18(17), 17997–18002 (2010). [CrossRef] [PubMed]
  26. J. Shu, W. Gao, Q. Xu, “Fano resonance in concentric ring apertures,” Opt. Express 21(9), 11101–11106 (2013). [CrossRef] [PubMed]
  27. E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]
  28. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493–4499 (1985). [CrossRef] [PubMed]
  29. D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).
  30. N. K. Grady, N. J. Halas, P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399(1-3), 167–171 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited