OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 3797–3810

Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators

Jason S. Pelc, Kelley Rivoire, Sonny Vo, Charles Santori, David A. Fattal, and Raymond G. Beausoleil  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 3797-3810 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1415 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We utilize cross-phase modulation to observe all-optical switching in microring resonators fabricated with hydrogenated amorphous silicon (a-Si:H). Using 2.7-ps pulses from a mode-locked fiber laser in the telecom C-band, we observe optical switching of a cw telecom-band probe with full-width at half-maximum switching times of 14.8 ps, using approximately 720 fJ of energy deposited in the microring. In comparison with telecom-band optical switching in undoped crystalline silicon microrings, a-Si:H exhibits substantially higher switching speeds due to reduced impact of free-carrier processes.

© 2014 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(230.5750) Optical devices : Resonators
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

Original Manuscript: October 22, 2013
Revised Manuscript: January 13, 2014
Manuscript Accepted: February 1, 2014
Published: February 11, 2014

Jason S. Pelc, Kelley Rivoire, Sonny Vo, Charles Santori, David A. Fattal, and Raymond G. Beausoleil, "Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators," Opt. Express 22, 3797-3810 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. G. Beausoleil, “Large-scale integrated photonics for high-performance interconnects,” J. Emerg. Technol. Comput. Syst. 7, 6:1–6:54 (2011). [CrossRef]
  2. J. Leuthold, C. Koos, W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010). [CrossRef]
  3. A. Harke, M. Krause, J. Mueller, “Low-loss singlemode amorphous silicon waveguides,” Electron. Lett. 41, 1377–1379 (2005). [CrossRef]
  4. R. Sun, J. Cheng, J. Michel, L. Kimerling, “Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process,” Opt. Lett. 34, 2378–2380 (2009). [CrossRef] [PubMed]
  5. S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun. 282, 1767–1770 (2009). [CrossRef]
  6. C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express 20, 22609–22615 (2012). [CrossRef] [PubMed]
  7. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides.” Opt. Express 19, B146–B153 (2011). [CrossRef]
  8. K. Narayanan, A. W. Elshaari, S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18, 9809–9814 (2010). [CrossRef] [PubMed]
  9. J. Matres, G. C. Ballesteros, P. Gautier, J.-M. Fédéli, J. Martí, C. J. Oton, “High nonlinear figure-of-merit amorphous silicon waveguides,” Opt. Express 21, 3932–3940 (2013). [CrossRef] [PubMed]
  10. K.-Y. Wang, A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37, 1331–1333 (2012). [CrossRef] [PubMed]
  11. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36, 552–554 (2011). [CrossRef] [PubMed]
  12. K.-Y. Wang, K. G. Petrillo, M. A. Foster, A. C. Foster, “Ultralow-power all-optical processing of high-speed data signals in deposited silicon waveguides,” Opt. Express 20, 24600–24606 (2012). [CrossRef] [PubMed]
  13. R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University, 2005).
  14. M. Stutzmann, W. B. Jackson, C. C. Tsai, “Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study,” Phys. Rev. B 32, 23–47 (1985). [CrossRef]
  15. R. W. Boyd, Nonlinear Optics (Academic Press, 2008), 3rd edition.
  16. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004). [CrossRef] [PubMed]
  17. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18, 3582–3591 (2010). [CrossRef] [PubMed]
  18. M. Waldow, T. Plötzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, H. Kurz, “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express 16, 7693 (2008). [CrossRef] [PubMed]
  19. K. Preston, P. Dong, B. Schmidt, M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92, 151104 (2008). [CrossRef]
  20. D. Taillaert, P. Bienstman, R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides.” Opt. Lett. 29, 2749–2751 (2004). [CrossRef] [PubMed]
  21. B. E. Little, J. P. Laine, S. T. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators.” Opt. Lett. 22, 4–6 (1997). [CrossRef] [PubMed]
  22. Q. Xu, D. Fattal, R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16, 4309–4315 (2008). [CrossRef] [PubMed]
  23. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29, 2861–2863 (2004). [CrossRef]
  24. S. Zhu, G. Q. Lo, W. Li, D. L. Kwong, “Effect of cladding layer and subsequent heat treatment on hydrogenated amorphous silicon waveguides.” Opt. Express 20, 23676–83 (2012). [CrossRef] [PubMed]
  25. N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators.” Sci. Rep. 3, 2885 (2013). [CrossRef] [PubMed]
  26. D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013). [CrossRef]
  27. M. Georgas, J. Leu, B. Moss, C. Sun, V. Stojanovic, “Addressing link-level design tradeoffs for integrated photonic interconnects,” in “Proceedings of the 2011 IEEE Custom Integrated Circuits Conference (CICC),” (2011), pp. 1–8. [CrossRef]
  28. R. G. Beausoleil, M. McLaren, N. P. Jouppi, “Photonic Architectures for Data Centers,” IEEE J. Sel. Top. Quantum Electron.19, 3700109:1–9 (2013). [CrossRef]
  29. P. Barclay, K. Srinivasan, O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper.” Opt. Express 13, 801–820 (2005). [CrossRef] [PubMed]
  30. T. Tanabe, M. Notomi, E. Kuramochi, H. Taniyama, “Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities.” Opt. Express 15, 7826–7839 (2007). [CrossRef] [PubMed]
  31. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010). [CrossRef]
  32. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, E. W. Van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991). [CrossRef]
  33. A. D. Bristow, N. Rotenberg, H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007). [CrossRef]
  34. E. W. Van Stryland, D. J. Hagan, Nonlinear Optics Group, CREOL, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL, USA (personal communication 2013).
  35. B. Little, S. Chu, H. Haus, J. Foresi, J.-P. Laine, “Microring resonator channel dropping filters,” J. Light. Technol. 15, 998–1005 (1997). [CrossRef]
  36. T. Van Vaerenbergh, M. Fiers, P. Mechet, T. Spuesens, R. Kumar, G. Morthier, B. Schrauwen, J. Dambre, P. Bienstman, “Cascadable excitability in microrings,” Opt. Express 20, 20292–20308 (2012). [CrossRef] [PubMed]
  37. J. J. Wathen, V. R. Pagán, T. E. Murphy, “Simple method to characterize nonlinear refraction and loss in optical waveguides.” Opt. Lett. 37, 4693–4695 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited