OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 3959–3967

Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers

Irnis Kubat, Christian Rosenberg Petersen, Uffe Visbech Møller, Angela Seddon, Trevor Benson, Laurent Brilland, David Méchin, Peter M. Moselund, and Ole Bang  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 3959-3967 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4567 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically demonstrate a novel approach for generating Mid-InfraRed SuperContinuum (MIR SC) by using concatenated fluoride and chalcogenide glass fibers pumped with a standard pulsed Thulium (Tm) laser (TFWHM=3.5ps, P0=20kW, νR=30MHz, and Pavg=2W). The fluoride fiber SC is generated in 10m of ZBLAN spanning the 0.9–4.1μm SC at the −30dB level. The ZBLAN fiber SC is then coupled into 10cm of As2Se3 chalcogenide Microstructured Optical Fiber (MOF) designed to have a zero-dispersion wavelength (λZDW) significantly below the 4.1μm InfraRed (IR) edge of the ZBLAN fiber SC, here 3.55μm. This allows the MIR solitons in the ZBLAN fiber SC to couple into anomalous dispersion in the chalcogenide fiber and further redshift out to the fiber loss edge at around 9μm. The final 0.9–9μm SC covers over 3 octaves in the MIR with around 15mW of power converted into the 6–9μm range.

© 2014 Optical Society of America

OCIS Codes
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(160.2750) Materials : Glass and other amorphous materials
(160.4330) Materials : Nonlinear optical materials

ToC Category:
Fiber Optics

Original Manuscript: December 20, 2013
Revised Manuscript: February 3, 2014
Manuscript Accepted: February 3, 2014
Published: February 12, 2014

Irnis Kubat, Christian Rosenberg Petersen, Uffe Visbech Møller, Angela Seddon, Trevor Benson, Laurent Brilland, David Méchin, Peter M. Moselund, and Ole Bang, "Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers," Opt. Express 22, 3959-3967 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Wartewig, R. H. H. Neubert, “Pharmaceutical applications of mid-IR and Raman spectroscopy,” Adv. Drug Delivery Rev. 57, 11441170 (2005). [CrossRef]
  2. A. Seddon, “Mid-Infrared (IR) - a hot topic: The potential for using mid-IR light for non-invasive early detection of skin cander in vivo,” Phys. Status Solidi B 250, 1020–1027 (2013). [CrossRef]
  3. R. Haus, K. Schäfer, W. Bautzer, J. Heland, H. Moseback, H. Bittner, T. Eisenmann, “Mobile fourier-transform infrared spectroscopy monitoring of air pollution,” Appl. Opt. 33, 5682–5689 (1994). [CrossRef] [PubMed]
  4. A. Mukherjee, S. Von der Porten, C. K. N. Patel, “Standoff detection of explosive substances at distances of up to 150 m,” Appl. Opt. (2010). [CrossRef] [PubMed]
  5. M. Razeghi, S. Slivken, Y. Bai, S. R. Darvish, “Quantum cascade laser: a versatile and powerfull tool,” Opt. Photon. News 19, 4247 (2008).
  6. M. Pushkarsky, M. Weida, T. Day, D. Arnone, R. Pritchett, D. Caffey, S. Crivello, “High-power tunable external cavity quantum cascade laser in the 5–11 micron regime,” Proc. SPIE 6871, 68711X (2008).
  7. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  8. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, J. Fred, L. Terry, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871 (2007). [CrossRef] [PubMed]
  9. C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, J. Mauricio, “10.5 W Time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse patteren modulation,” IEEE J. Sel. Top. Quant. Electron.15(2009). [CrossRef]
  10. Q. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, K. Suzuku, Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85μm in a fluoride fiber,” Opt. Lett.34(2009). [CrossRef]
  11. P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, S. R. Keiding, “Supercontinuum-broad as a lamp bright as a laser, now in the mid-infrared,” Proc. SPIE8381, 83811A (2012). [CrossRef]
  12. P. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, “Highly stable, all-fiber, high power ZBLAN supercontinuum source reaching 4.75 μm used for nanosecond mid-IR spectroscopy,” (2013), p. JTh5A.9.
  13. R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5μm,” Proc. SPIE 8898, 889808 (2013).
  14. NP Photonics Inc., “Tellurite based Mid-infrared Supercontinuum sources,” Online at www.npphotonics.com (2013).
  15. C. A. Michaels, T. Masiello, P. M. Chu, “Fourier transform spectrometry with a near-infrared supercontinuum source,” Appl. Spectrosc. 63, 538543 (2009). [CrossRef]
  16. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012). [CrossRef] [PubMed]
  17. J. Swiderski, M. Michalska, “Mid-infrared supercontinuum generation in a single-mode thulium-doped fiber amplifier,” Laser Phys. Lett. 10, 035105 (2013). [CrossRef]
  18. V. Shiryaev, M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013). [CrossRef]
  19. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, I. D. Aggarwal, “Large Raman gain and nonlinear phase shift in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146–1155 (2004). [CrossRef]
  20. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As22Se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010). [CrossRef] [PubMed]
  21. R. R. Gattass, L. B. Shaw, V. Q. Nguyena, P. C. Purezaa, I. D. Aggarwal, J. S. Sangheraa, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fib. Technol.18(2012).
  22. W. Yuan, “2–10 μm mid-infrared supercontinuum generation in As2Se3 photonics crystal fiber,” Laser Phys. Lett. 10, 095107 (2013). [CrossRef]
  23. C. Wei, X. Zhu, R. A. Norwood, F. Song, N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 μm,” Opt. Express 21, 29488–29504 (2013). [CrossRef]
  24. M. Bache, H. Guo, B. Zhou, “Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals,” Opt. Express 3, 1647–1657 (2013). [CrossRef]
  25. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, D.-Y. C. Z. Yang, S. Madden, B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mat. Express 3, 1075–1086 (2013). [CrossRef]
  26. P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21, 29927–29937 (2013). [CrossRef]
  27. C. Agger, S. T. Sørensen, C. L. Thomsen, S. R. Keiding, O. Bang, “Nonlinear soliton matching between optical fibers,” Opt. Lett. 36, 2596–2598 (2011). [CrossRef] [PubMed]
  28. C. Hagen, J. Walewski, S. Sanders, “Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006). [CrossRef]
  29. O.P. Kulkarni, V.V. Alexander, M. Kumar, M.J. Freeman, M.N. Islam, F.L. Terry, M. Neelakandan, A. Chan, “Supercontinuum generation from 1.9 to 4.5m in ZBLAN fiber with high average power generation beyond 3.8m using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B 28, 2486–2498 (2011). [CrossRef]
  30. J. Geng, Q. Wang, S. Jiang, “High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier,” Appl. Opt. 51, 834840 (2012). [CrossRef]
  31. AdValue Photonics Fiber Lasers, “Two-micron thulium-doped fiber lasers achieve 10 kW peak power (feature article in Laser Focus World Feb. 2013 issue),” Online at http://www.advaluephotonics.com/ (2013).
  32. F. Gan, “Optical properties of fluoride glasses: a review,” Journal of non-crystalline solids 184, 9–20 (1995). [CrossRef]
  33. FiberLabs Inc., “Fluoride fibers,” Online at http://www.fiberlabs-inc.com/ (2013).
  34. Amorphous Materials Inc., “Amtir-2,” Online at http://www.amorphousmaterials.com/ (2013).
  35. L. Brilland, D. Méchin, “Loss measurements of a 20 μm As2Se3 grapefruit fiber,” Private communication, 2013.
  36. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977). [CrossRef]
  37. I. Kubat, C. S. Agger, P. M. Moselund, O. Bang, “Mid-infrared supercontinuum generation to 4.5um in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 and 1550nm,” J. Opt. Soc. Am. B 30, 2743–2757 (2013). [CrossRef]
  38. J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, F. S. G. Renversez, M. E. Amraoui, J. L. Adam, T. Chartier, D. Méchin, L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995nm,” Opt. Express 18, 26647–26654 (2010). [CrossRef] [PubMed]
  39. J.-L. Adam, J. Trolès, L. Brilland, “Low-loss mid-ir microstructured optical fibers,” in “Optical Fiber Communication Conference,” (2012), p. OM3D.2.
  40. J. H. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber. Technol. 18, 327–344 (2012). [CrossRef]
  41. M. D. Nielsen, G. Vienne, J. R. Folkenberg, “Investigation of microdeformation-induced attenuation spectra in a photonic crystal fiber,” Opt. Lett. 28, 236–238 (2003). [CrossRef] [PubMed]
  42. N. A. Mortensen, J. R. Folkenberg, “Low-loss criterion and effective area considerations for photonic crystal fibers,” J. Opt. A: Pure Appl. Opt. 5, 163–167 (2003). [CrossRef]
  43. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, P. St. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 28, 236–238 (2005). [CrossRef]
  44. B. Ung, M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18, 8647–8659 (2010). [CrossRef] [PubMed]
  45. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, O. Bang, “Supercontinuum generation in ZBLAN fibers - detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012). [CrossRef]
  46. M. Saad, “Heavy metal fluoride glass fibers and their applications,” Proc. SPIE8307, 83070N–83070N–16.
  47. J. Sanghera, I. Aggarwal, “Active and passive chalcogenide glass optical fibers for IR applications: a review,” Journal of Non-Crystalline Solids 256–257, 6–16 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited