OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4006–4020

Long-range surface plasmon triple-output Mach-Zehnder interferometers

Hui Fan, Robert Charbonneau, and Pierre Berini  »View Author Affiliations


Optics Express, Vol. 22, Issue 4, pp. 4006-4020 (2014)
http://dx.doi.org/10.1364/OE.22.004006


View Full Text Article

Enhanced HTML    Acrobat PDF (1202 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A triple-output Mach-Zehnder interferometer (MZI) operating with long-range surface plasmon-polariton waves, consisting of a MZI in cascade with a triple coupler, is demonstrated at a wavelength of ~1370 nm, using the thermo-optic effect to produce phase shifting. A theoretical model for three-waveguide coupling is also proposed and was applied to compute the transfer characteristic of various designs. Dimensions for the device were selected to optimize performance, experiments were performed, and the results were compared to theory. The outputs were sinusoidally related to the thermally-induced phase shift and separated by ~2π/3 rad, as expected theoretically. Four detection schemes that take advantage of the 3 times larger dynamic range and suppress time-varying common perturbations are proposed and analyzed in order to improve the detection limit of the device. A minimum detectable phase shift ~2/3 that of a single output was obtained from a power difference scheme and a normalization scheme. The smallest minimum detectable phase shift was 7.3 mrad. The device is promising for sensing applications, including (bio)chemical sensing.

© 2014 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Plasmonics

History
Original Manuscript: November 15, 2013
Revised Manuscript: February 3, 2014
Manuscript Accepted: February 3, 2014
Published: February 13, 2014

Virtual Issues
Vol. 9, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Hui Fan, Robert Charbonneau, and Pierre Berini, "Long-range surface plasmon triple-output Mach-Zehnder interferometers," Opt. Express 22, 4006-4020 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-4-4006


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. D. Boardman, ed., Electromagnetic Surface Modes (John Wiley, 1982).
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  3. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1(3), 484–588 (2009). [CrossRef]
  4. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, P. Berini, “Passive integrated optics elements based on long-range surface plasmon-polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006). [CrossRef]
  5. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000). [CrossRef]
  6. K. Leosson, T. Nikolajsen, A. Boltasseva, S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14(1), 314–319 (2006). [CrossRef] [PubMed]
  7. G. Gagnon, N. Lahoud, G. A. Mattiussi, P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol. 24(11), 4391–4402 (2006). [CrossRef]
  8. I. Breukelaar, R. Charbonneau, P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100(4), 043104 (2006). [CrossRef]
  9. H. Fan, P. Berini, “Thermo-optic characterization of long-range surface-plasmon devices in Cytop,” Appl. Opt. 52(2), 162–170 (2013). [CrossRef] [PubMed]
  10. T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, “Surface plasmon-polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004). [CrossRef]
  11. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18(2), 1207–1216 (2010). [CrossRef] [PubMed]
  12. S. Kaya, J.-C. Weeber, F. Zacharatos, K. Hassan, T. Bernardin, B. Cluzel, J. Fatome, C. Finot, “Photo-thermal modulation of surface plasmon polariton propagation at telecommunication wavelengths,” Opt. Express 21(19), 22269–22284 (2013). [CrossRef] [PubMed]
  13. S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29(20), 2378–2380 (2004). [CrossRef] [PubMed]
  14. J. Ptasinski, L. Pang, P. C. Sun, B. Slutsky, Y. Fainman, “Differential detection for nanoplasmonic resonance sensors,” IEEE Sens. J. 12(2), 384–388 (2012). [CrossRef]
  15. R. G. Heideman, P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: Design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system,” Sens. Actuators B Chem. 61(1), 100–127 (1999). [CrossRef]
  16. A. Khan, O. Krupin, E. Lisicka-Skrzek, P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013). [CrossRef]
  17. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, N. Fabricius, “Integrated optical Mach-Zehnder biosensor,” J. Lightwave Technol. 16(4), 583–592 (1998). [CrossRef]
  18. K. C. Vernon, D. E. Gómez, T. J. Davis, “A compact interferometric sensor design using three waveguide coupling,” J. Appl. Phys. 106(10), 104306 (2009). [CrossRef]
  19. A. B. Buckman, Guided-Wave Photonics (Harcourt Brace Jovanovich, 1992).
  20. S. K. Sheem, “Optical fiber interferometers with [3x3] directional couplers: Analysis,” J. Appl. Phys. 52(6), 3865 (1981). [CrossRef]
  21. K. P. Koo, A. B. Tveten, A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3x3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616 (1982). [CrossRef]
  22. P. Hua, B. Jonathan Luff, G. R. Quigley, J. S. Wilkinson, K. Kawaguchi, “Integrated optical dual Mach-Zehnder interferometer sensor,” Sens. Actuators B Chem. 87(2), 250–257 (2002). [CrossRef]
  23. H. Fan, P. Berini, “Noise cancellation in long-range surface plasmon dual-output Mach-Zehnder interferometers,” J. Lightwave Technol. 31(15), 2606–2612 (2013). [CrossRef]
  24. A. Yariv, Optical Electronics (Saunders, 1991).
  25. S. L. Chuang, “Application of the strongly coupled-mode theory to integrated optical devices,” IEEE J. Quantum Electron. 23(5), 499–509 (1987). [CrossRef]
  26. S. L. Chuang, “A coupled-mode theory for multiwaveguide systems satisfying the reciprocity theorem and power conservation,” J. Lightwave Technol. 5(1), 174–183 (1987). [CrossRef]
  27. H. Fan, R. Buckley, P. Berini, “Passive long-range surface plasmon-polariton devices in Cytop,” Appl. Opt. 51(10), 1459–1467 (2012). [CrossRef] [PubMed]
  28. P. Berini, R. Charbonneau, N. Lahoud, G. Mattiussi, “Characterization of long-range surface plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005). [CrossRef]
  29. Asahi Glass Co, Ltd., Japan, “Amorphous fluoropolymer CYTOP,” Jan. 2009 [Online]. Available: http://www.agc-cytop.com .
  30. E. D. Palik and G. Ghosh, Electronic Handbook of Optical Constants of Solids (Academic, 1999).
  31. H. Asiri, “Fabrication of surface plasmon biosensors in CYTOP,” Master’s thesis, Dep. Chem. Biol. Eng., Univ. Ottawa, Ottawa, Canada, 2012.
  32. C. Chiu, E. Lisicka-Shrzek, R. N. Tait, P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28(4), 729–735 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited