OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4065–4074

Reconfigurable terahertz metamaterial device with pressure memory

Jinqi Wang, Shuchang Liu, Sivaraman Guruswamy, and Ajay Nahata  »View Author Affiliations


Optics Express, Vol. 22, Issue 4, pp. 4065-4074 (2014)
http://dx.doi.org/10.1364/OE.22.004065


View Full Text Article

Enhanced HTML    Acrobat PDF (2053 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a liquid metal-based reconfigurable terahertz (THz) metamaterial device that is not only pressure driven, but also exhibits pressure memory. The discrete THz response is obtained by injecting eutectic gallium indium (EGaIn) into a microfluidic structure that is fabricated in polydimethylsiloxane (PDMS) using conventional soft lithography techniques. The shape of the injected EGaIn is mechanically stabilized by the formation of a thin oxide surface layer that allows the fluid to maintain its configuration within the microchannels despite its high intrinsic surface energy. Although the viscosity of EGaIn is twice that of water, the formation of the surface oxide layer prevents flow into a microchannel unless a critical pressure is exceeded. Using a structure in which the lateral channel dimensions vary, we progressively increase the applied pressure beyond the relevant critical pressure for each section of the device, enabling switching from one geometry to another (split ring resonator to closed ring resonator to an irregular closed ring resonator). As the geometry changes, the transmission spectrum of the device changes dramatically. When the external applied pressure is removed between device geometry changes, the liquid metal morphology remains unchanged, which can be regarded as a form of pressure memory. Once the device is fully filled with liquid metal, it can be erased through the use of mechanical pressure and exposure to acid vapors.

© 2014 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Metamaterials

History
Original Manuscript: November 25, 2013
Revised Manuscript: January 28, 2014
Manuscript Accepted: February 9, 2014
Published: February 13, 2014

Citation
Jinqi Wang, Shuchang Liu, Sivaraman Guruswamy, and Ajay Nahata, "Reconfigurable terahertz metamaterial device with pressure memory," Opt. Express 22, 4065-4074 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-4-4065


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004). [CrossRef] [PubMed]
  2. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008). [CrossRef]
  3. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006). [CrossRef] [PubMed]
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef] [PubMed]
  5. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009). [CrossRef]
  6. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006). [CrossRef] [PubMed]
  7. J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M. He, J. W. Zhang, J. Han, H.-T. Chen, W. Zhang, “Terahertz superconductor metamaterial,” Appl. Phys. Lett. 97(7), 071102 (2010). [CrossRef]
  8. B. Jin, C. Zhang, S. Engelbrecht, A. Pimenov, J. Wu, Q. Xu, C. Cao, J. Chen, W. Xu, L. Kang, P. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18(16), 17504–17509 (2010). [CrossRef] [PubMed]
  9. J. N. Koster, “Directional solidification and melting of eutectic GaIn,” Cryst. Res. Technol. 34(9), 1129–1140 (1999). [CrossRef]
  10. M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, G. M. Whitesides, “Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature,” Adv. Funct. Mater. 18(7), 1097–1104 (2008). [CrossRef]
  11. R. C. Chiechi, E. A. Weiss, M. D. Dickey, G. M. Whitesides, “Eutectic gallium-indium (EGaIn): A moldable liquid metal for electrical characterization of self-assembled monolayers,” Angew. Chem. Int. Ed. Engl. 47(1), 142–144 (2008). [CrossRef] [PubMed]
  12. J.-H. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi, M. D. Dickey, “Reversibly deformable and mechanically tunable fluidic antennas,” Adv. Funct. Mater. 19(22), 3632–3637 (2009). [CrossRef]
  13. M. Kubo, X. Li, C. Kim, M. Hashimoto, B. J. Wiley, D. Ham, G. M. Whitesides, “Stretchable microfluidic radiofrequency antennas,” Adv. Mater. 22(25), 2749–2752 (2010). [CrossRef] [PubMed]
  14. J. Wang, S. Liu, Z. V. Vardeny, A. Nahata, “Liquid metal-based plasmonics,” Opt. Express 20(3), 2346–2353 (2012). [CrossRef] [PubMed]
  15. J. Wang, S. Liu, A. Nahata, “Reconfigurable plasmonic devices using liquid metals,” Opt. Express 20(11), 12119–12126 (2012). [CrossRef] [PubMed]
  16. S. Zhu, J.-H. So, R. Mays, S. Desai, W. R. Barnes, B. Pourdeyhimi, M. D. Dickey, “Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core,” Adv. Funct. Mater. 23(18), 2308–2314 (2013). [CrossRef]
  17. D. J. Lipomi, B. C.-K. Tee, M. Vosgueritchian, Z. Bao, “Stretchable organic solar cells,” Adv. Mater. 23(15), 1771–1775 (2011). [CrossRef] [PubMed]
  18. E. Palleau, S. Reece, S. C. Desai, M. E. Smith, M. D. Dickey, “Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics,” Adv. Mater. 25(11), 1589–1592 (2013). [CrossRef] [PubMed]
  19. M. Rashed Khan, G. J. Hayes, J.-H. So, G. Lazzi, M. D. Dickey, “A frequency shifting liquid metal antenna with pressure responsiveness,” Appl. Phys. Lett. 99(1), 013501 (2011). [CrossRef]
  20. B. L. Cumby, G. J. Hayes, M. D. Dickey, R. S. Justice, C. E. Tabor, J. C. Heikenfeld, “Reconfigurable liquid metal circuits by Laplace pressure shaping,” Appl. Phys. Lett. 101(17), 174102 (2012). [CrossRef]
  21. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000). [CrossRef] [PubMed]
  22. D. Grischkowsky, S. Keiding, M. van Exter, C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990). [CrossRef]
  23. D. Zrnic, D. S. Swatik, “On the resistivity and surface tension of the eutectic alloy of gallium and indium,” J. Less Common Met. 18(1), 67–68 (1969). [CrossRef]
  24. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  25. D. Roy Chowdhury, R. Singh, J. F. O’Hara, H.-T. Chen, A. J. Taylor, A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99(23), 231101 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited