OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4168–4179

Stretchable optical waveguides

Jeroen Missinne, Sandeep Kalathimekkad, Bram Van Hoe, Erwin Bosman, Jan Vanfleteren, and Geert Van Steenberge  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4168-4179 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (5640 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce the concept of mechanically stretchable optical waveguides. The technology to fabricate these waveguides is based on a cost-efficient replication method, employing commercially available polydimethylsiloxane (PDMS) materials. Furthermore, VCSELs (λ = 850 nm) and photodiodes, embedded in a flexible package, were integrated with the waveguides to obtain a truly bendable, stretchable and mechanically deformable optical link. Since these sources and detectors were integrated, it was possible to determine the influence of bending and stretching on the waveguide performance.

© 2014 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.3120) Optical devices : Integrated optics devices
(250.0250) Optoelectronics : Optoelectronics
(250.5460) Optoelectronics : Polymer waveguides

ToC Category:
Integrated Optics

Original Manuscript: November 8, 2013
Revised Manuscript: December 13, 2013
Manuscript Accepted: December 16, 2013
Published: February 18, 2014

Jeroen Missinne, Sandeep Kalathimekkad, Bram Van Hoe, Erwin Bosman, Jan Vanfleteren, and Geert Van Steenberge, "Stretchable optical waveguides," Opt. Express 22, 4168-4179 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Lumelsky, M. Shur, S. Wagner, “Sensitive Skin Workshop, Arlington, Virginia,” NSF, DARPA Sensitive Skin Workshop Report pp. 1–129 (1999).
  2. S. Cheng, Z. Wu, “A microfluidic, reversibly stretchable, large-area wireless strain sensor,” Adv. Funct. Mater. 21, 2282–2290 (2011). [CrossRef]
  3. Nokia, “The Morph Concept, “ https://research.nokia.com/morph (accessed 2013).
  4. R. Verplancke, F. Bossuyt, D. Cuypers, J. Vanfleteren, “Thin-film stretchable electronics technology based on meandering interconnections: fabrication and mechanical performance,” J. Micromech. Microeng. 22, 015002 (2012). [CrossRef]
  5. F. Bossuyt, T. Vervust, J. Vanfleteren, “Stretchable electronics technology for large area applications: fabrication and mechanical characterization,” IEEE Trans. Comp. Pack. Man. 3, 229–235 (2013).
  6. T. Li, Z. Huang, Z. Suo, S. P. Lacour, S. Wagner, “Stretchability of thin metal films on elastomer substrates,” Appl. Phys. Lett. 85, 3435–3437 (2004). [CrossRef]
  7. J. A. Rogers, T. Someya, Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327, 1603–1607 (2010). [CrossRef] [PubMed]
  8. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, “A rubberlike stretchable active matrix using elastic conductors,” Science 321, 1468–1472 (2008). [CrossRef] [PubMed]
  9. D. Pham, H. Subbaraman, M. Chen, X. Xu, R. Chen, “Self-aligned carbon nanotube thin-film transistors on flexible substrates with novel source -drain contact and multilayer metal interconnection,” IEEE Trans. Nanotechnol. 11, 44–50 (2012). [CrossRef]
  10. D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, “Stretchable and foldable silicon integrated circuits,” Science 320, 507–511 (2008). [CrossRef] [PubMed]
  11. B. Van Hoe, G. Van Steenberge, E. Bosman, J. Missinne, T. Geernaert, F. Berghmans, D. Webb, P. Van Daele, “Optical fiber sensors embedded in flexible polymer foils,” in Optical Sensing and Detection, F. Berghmans, A. G. Mignani, C. A. van Hoof, eds., Proc. SPIE 7726, 72603 (2010).
  12. J. Garra, T. Long, J. Currie, T. Schneider, R. White, M. Paranjape, “Dry etching of polydimethylsiloxane for microfluidic systems,” J. Vac. Sci. Technol. A 20, 975–982 (2002). [CrossRef]
  13. M. Schuettler, C. Henle, J. Ordonez, G. Suaning, N. Lovell, T. Stieglitz, “Patterning of silicone rubber for micro-electrode array fabrication,” in Proceedings of International IEEE/EMBS Conference on Neural Engineering (Institute of Electrical and Electronics Engineers, New York, 1988), pp. 53–56.
  14. D. Szmigiel, K. Domanski, P. Prokaryn, P. Grabiec, “Deep etching of biocompatible silicone rubber,” Microelectron. Eng. 83, 1178–1181 (2006). [CrossRef]
  15. S. J. Hwang, D. J. Oh, P. G. Jung, S. M. Lee, J. S. Go, J.-H. Kim, K.-Y. Hwang, J. S. Ko, “Dry etching of polydimethylsiloxane using microwave plasma,” J. Micromech. Microeng. 19, 095010 (2009). [CrossRef]
  16. B. A. Fogarty, K. E. Heppert, T. J. Cory, K. R. Hulbutta, R. S. Martin, S. M. Lunte, “Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using co2 laser ablation,” Analyst 130, 924–930 (2005). [CrossRef] [PubMed]
  17. Y. Xia, G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci. 28, 153–184 (1998). [CrossRef]
  18. D. A. Chang-Yen, R. K. Eich, B. K. Gale, “A monolithic PDMS waveguide system fabricated using soft-lithography techniques,” J. Lightwave Technol. 23, 2088 (2005). [CrossRef]
  19. J. S. Kee, D. P. Poenar, P. Neuzil, L. Yobas, “Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements,” Sensor. Actuat. B-Chem. 134, 532–538 (2008). [CrossRef]
  20. S. Kopetz, D. Cai, E. Rabe, A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU-Int. J. Electron. Commun. 61, 163–167 (2007). [CrossRef]
  21. K. S. Ryu, X. Wang, K. Shaikh, C. Liu, “A method for precision patterning of silicone elastomer and its applications,” J. Microelectromech. Syst. 13, 568–575 (2004). [CrossRef]
  22. J. S. Kee, D. P. Poenar, P. Neuzil, L. Yobas, “Design and fabrication of poly(dimethylsiloxane) single-mode rib waveguide,” Opt. Express 17, 11739–11746 (2009). [CrossRef] [PubMed]
  23. V. Lien, Y. Berdichevsky, Y.-H. Lo, “A prealigned process of integrating optical waveguides with microfluidic devices,” IEEE Photon. Technol. Lett. 16, 1525–1527 (2004). [CrossRef]
  24. V. Lien, K. Zhao, Y. Berdichevsky, Y.-H. Lo, “High-sensitivity cytometric detection using fluidic-photonic integrated circuits with array waveguides,” IEEE J. Sel. Top. Quantum Electron. 11, 827–834 (2005). [CrossRef]
  25. N. Bamiedakis, R. Penty, I. White, “Compact multimode polymer waveguide bends for board-level optical interconnects,” J. Lightwave Technol. 31, 2370–2375 (2013). [CrossRef]
  26. B. Riegler, R. Thomaier, “Index matching silicone for optoelectronic applications,” in New Developments in Optomechanics, A. E. Hatheway, eds., Proc. SPIE 6665, 666508 (2007). [CrossRef]
  27. S. Bhattacharya, A. Datta, J. Berg, S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14, 590–597 (2005). [CrossRef]
  28. B. Van Hoe, E. Bosman, J. Missinne, S. Kalathimekkad, G. Van Steenberge, P. Van Daele, “Novel coupling and packaging approaches for optical interconnects,” in Optoelectronic Interconnects XII, A. L. Glebov, R. T. Chen, eds., Proc. SPIE 8267, 82670T–82670T–11 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited