OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 4 — Feb. 24, 2014
  • pp: 4388–4403

Determination of the water vapor continuum absorption by THz-TDS and Molecular Response Theory

Yihong Yang, Mahboubeh Mandehgar, and D. Grischkowsky  »View Author Affiliations

Optics Express, Vol. 22, Issue 4, pp. 4388-4403 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2462 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Determination of the water vapor continuum absorption from 0.35 to 1 THz is reported. The THz pulses propagate though a 137 m long humidity-controlled chamber and are measured by THz time-domain spectroscopy (THz-TDS). The average relative humidity along the entire THz path is precisely obtained by measuring the difference between transit times of the sample and reference THz pulses to an accuracy of 0.1 ps. Using the measured total absorption and the calculated resonance line absorption with the Molecular Response Theory lineshape, based on physical principles and measurements, an accurate continuum absorption is obtained within four THz absorption windows, that agrees well with the empirical theory. The absorption is significantly smaller than that obtained using the van Vleck-Weisskopf lineshape with a 750 GHz cut-off.

© 2014 Optical Society of America

OCIS Codes
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(300.6495) Spectroscopy : Spectroscopy, teraherz
(010.1030) Atmospheric and oceanic optics : Absorption

ToC Category:
Terahertz Optics

Original Manuscript: November 21, 2013
Revised Manuscript: February 10, 2014
Manuscript Accepted: February 11, 2014
Published: February 19, 2014

Yihong Yang, Mahboubeh Mandehgar, and D. Grischkowsky, "Determination of the water vapor continuum absorption by THz-TDS and Molecular Response Theory," Opt. Express 22, 4388-4403 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Paine, R. Blundell, D. Papa, J. Barrett, S. Radford, “A Fourier transform spectrometer for measurement of atmospheric transmission at submillimeter wavelengths,” Publ. Astron. Soc. Pac. 112(767), 108–118 (2000). [CrossRef]
  2. E. Cianca, T. Rossi, A. Yahalom, Y. Pinhasi, J. Farserotu, C. Sacchi, “EHF for satellite communications: the new broadband frontier,” Proc. IEEE 99(11), 1858–1881 (2011). [CrossRef]
  3. J. S. Melinger, Y. Yang, M. Mandehgar, D. Grischkowsky, “THz detection of small molecule vapors in the atmospheric transmission windows,” Opt. Express 20(6), 6788–6807 (2012). [CrossRef] [PubMed]
  4. Y. Yang, M. Mandehgar, D. Grischkowsky, “Understanding THz pulse transmission in the atmosphere,” IEEE Trans. THz Sci. Technol. 2(4), 406–415 (2012).
  5. H. J. Liebe, “The atmospheric water vapor continuum below 300 GHz,” Int. J. Infrared Millim. Waves 5(2), 207–227 (1984). [CrossRef]
  6. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transfer 110(9–10), 533–572 (2009). [CrossRef]
  7. H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, H. S. P. Muller, “Sub-millimeter, millimeter, and microwave spectral line catalog,” J. Quantum Spectrosc. Radiat. Transfer 60(5), 883–890 (1998); Access to specific catalog entries may be found at http://spec.jpl.nasa.gov/ .
  8. R. J. Hill, “Water vapor-absorption lineshape comparison using the 22-GHz line: the Van Vleck-Weisskopf shape affirmed,” Radio Sci. 21(3), 447–451 (1986). [CrossRef]
  9. M. A. Koshelev, E. A. Serov, V. V. Parshin, M. Yu. Tretyakov, “Millimeter wave continuum absorption in moist nitrogen at temperature 261-328K,” J. Quantum Spectrosc. Radiat. Transfer 112(17), 2704–2712 (2011). [CrossRef]
  10. M. Y. Tretyakov, A. F. Krupnov, M. A. Koshelev, D. S. Makarov, E. A. Serov, V. V. Parshin, “Resonator spectrometer for precise broadband investigations of atmospheric absorption in discrete lines and water vapor related continuum in millimeter wave range,” Rev. Sci. Instrum. 80(9), 093106 (2009). [CrossRef] [PubMed]
  11. T. Kuhn, A. Bauer, M. Godon, S. Buhler, K. Kunzi, “Water vapor continuum: absorption measurements at 350GHz and model calculations,” J. Quantum Spectrosc. Radiat. Transfer 74(5), 545–562 (2002). [CrossRef]
  12. V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, R. H. Tipping, “New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz,” J. Quantum Spectrosc. Radiat. Transfer 109(3), 458–467 (2008). [CrossRef]
  13. D. M. Slocum, E. J. Slingerland, R. H. Giles, T. M. Goyette, “Atmospheric absorption of terahertz radiation and water vapor continuum effects,” J. Quantum Spectrosc. Radiat. Transfer 127, 49–63 (2013). [CrossRef]
  14. P. W. Rosenkranz, “Water vapor microwave continuum absorption: a comparison of measurements and models,” Radio Sci. 33(4), 919–928 (1998). [CrossRef]
  15. J. H. Van Vleck, V. F. Weisskopf, “On the shape of collision-broadened lines,” Rev. Mod. Phys. 17(2–3), 227–236 (1945). [CrossRef]
  16. C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (Dover, 1975).
  17. Y. Yang, M. Mandehgar, D. Grischkowsky, “Broad-band THz pulse transmission through the atmosphere,” IEEE Trans. THz Sci. Technol. 1(1), 264–273 (2011).
  18. D. Grischkowsky, S. Keiding, M. van Exter, C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990). [CrossRef]
  19. Y. Yang, A. Shutler, D. Grischkowsky, “Measurement of the transmission of the atmosphere from 0.2 to 2 THz,” Opt. Express 19(9), 8830–8838 (2011). [CrossRef] [PubMed]
  20. Y. Yang, M. Mandehgar, D. Grischkowsky, “Time domain measurement of the THz refractivity of water vapor,” Opt. Express 20(24), 26208–26218 (2012). [CrossRef] [PubMed]
  21. H. Harde, N. Katzenellenbogen, D. Grischkowsky, “Line-shape transition of collision broadened lines,” Phys. Rev. Lett. 74(8), 1307–1310 (1995). [CrossRef] [PubMed]
  22. H. Harde, R. A. Cheville, D. Grischkowsky, “Terahertz studies of collision broadened rotational lines,” J. Phys. Chem. A 101(20), 3646–3660 (1997). [CrossRef]
  23. D. Grischkowsky, Y. Yang, M. Mandehgar, “Zero-frequency refractivity of water vapor, comparison of Debye and van-Vleck Weisskopf theory,” Opt. Express 21(16), 18899–18908 (2013). [CrossRef] [PubMed]
  24. M. Mandehgar, Y. Yang, D. Grischkowsky, “Atmosphere characterization for simulation of the two optimal wireless terahertz digital communication links,” Opt. Lett. 38(17), 3437–3440 (2013). [CrossRef] [PubMed]
  25. D. E. Burch and D. A. Gryvnak, “Continuum absorption by water vapor in the infrared and millimeter regions,” in Atmospheric Water Vapor, A. Deepak, ed. (Academic, 1980), pp. 47–76.
  26. J. H. van Vleck, “The absorption of microwaves by oxygen,” Phys. Rev. 71(7), 413–424 (1947). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited