OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5325–5340

Monte Carlo model of the depolarization of backscattered linearly polarized light in the sub-diffusion regime

Andrew J. Gomes, Herbert C. Wolfsen, Michael B. Wallace, Frances K. Cayer, and Vadim Backman  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5325-5340 (2014)
http://dx.doi.org/10.1364/OE.22.005325


View Full Text Article

Enhanced HTML    Acrobat PDF (1845 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a predictive model of the depolarization ratio of backscattered linearly polarized light from spatially continuous refractive index media that is applicable to the sub-diffusion regime of light scattering. Using Monte Carlo simulations, we derived a simple relationship between the depolarization ratio and both the sample optical properties and illumination-collection geometry. Our model was validated on tissue simulating phantoms and found to be in good agreement. We further show the utility of this model by demonstrating its use for measuring the depolarization length from biological tissue in vivo. We expect our results to aid in the interpretation of the depolarization ratio from sub-diffusive reflectance measurements.

© 2014 Optical Society of America

OCIS Codes
(290.5855) Scattering : Scattering, polarization
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Scattering

History
Original Manuscript: September 12, 2012
Revised Manuscript: October 27, 2012
Manuscript Accepted: November 15, 2012
Published: February 28, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Andrew J. Gomes, Herbert C. Wolfsen, Michael B. Wallace, Frances K. Cayer, and Vadim Backman, "Monte Carlo model of the depolarization of backscattered linearly polarized light in the sub-diffusion regime," Opt. Express 22, 5325-5340 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-5325


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Ghosh, I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011). [CrossRef] [PubMed]
  2. E. Akkermans, P. E. Wolf, R. Maynard, G. Maret, “Theoretical study of the coherent backscattering of light by disordered media,” J. Phys. France 49, 77–98 (1988).
  3. L. F. Rojas-Ochoa, D. Lacoste, R. Lenke, P. Schurtenberger, F. Scheffold, “Depolarization of backscattered linearly polarized light,” J. Opt. Soc. Am. A 21(9), 1799–1804 (2004). [CrossRef] [PubMed]
  4. M. Xu, R. R. Alfano, “Light depolarization by tissue and phantoms,” Proc. SPIE 60840, 60840T (2006). [CrossRef]
  5. J. D. Rogers, I. R. Capoğlu, V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett. 34(12), 1891–1893 (2009). [CrossRef] [PubMed]
  6. A. J. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. K. Roy, V. Backman, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17(4), 047005 (2012). [CrossRef] [PubMed]
  7. A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Top. Quantum Electron. 18(4), 1313–1325 (2011).
  8. M. Moscoso, J. B. Keller, G. Papanicolaou, “Depolarization and blurring of optical images by biological tissue,” J. Opt. Soc. Am. A 18(4), 948–960 (2001). [CrossRef] [PubMed]
  9. J. M. Schmitt, G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21(16), 1310–1312 (1996). [CrossRef] [PubMed]
  10. M. Xu, R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett. 30(22), 3051–3053 (2005). [CrossRef] [PubMed]
  11. V. Turzhitsky, A. Radosevich, J. D. Rogers, A. Taflove, V. Backman, “A predictive model of backscattering at subdiffusion length scales,” Biomed. Opt. Express 1(3), 1034–1046 (2010). [CrossRef] [PubMed]
  12. M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97(13), 138102 (2006). [CrossRef] [PubMed]
  13. C. J. Sheppard, “Fractal model of light scattering in biological tissue and cells,” Opt. Lett. 32(2), 142–144 (2007). [CrossRef] [PubMed]
  14. O. Nadiarnykh, R. B. LaComb, M. A. Brewer, P. J. Campagnola, “Alterations of the extracellular matrix in ovarian cancer studied by Second Harmonic Generation imaging microscopy,” BMC Cancer 10(1), 94 (2010). [CrossRef] [PubMed]
  15. V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, V. Backman, “Measuring mucosal blood supply in vivo with a polarization-gating probe,” Appl. Opt. 47(32), 6046–6057 (2008). [CrossRef] [PubMed]
  16. D. Bicout, C. Brosseau, A. S. Martinez, J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994). [CrossRef] [PubMed]
  17. M. Xu, R. R. Alfano, “Random walk of polarized light in turbid media,” Phys. Rev. Lett. 95(21), 213901 (2005). [CrossRef] [PubMed]
  18. Y. Liu, Y. Kim, X. Li, V. Backman, “Investigation of depth selectivity of polarization gating for tissue characterization,” Opt. Express 13(2), 601–611 (2005). [CrossRef] [PubMed]
  19. X. Guo, M. F. G. Wood, N. Ghosh, I. A. Vitkin, “Depolarization of light in turbid media: a scattering event resolved Monte Carlo study,” Appl. Opt. 49(2), 153–162 (2010). [CrossRef] [PubMed]
  20. M. Ahmad, S. Alali, A. Kim, M. F. Wood, M. Ikram, I. A. Vitkin, “Do different turbid media with matched bulk optical properties also exhibit similar polarization properties?” Biomed. Opt. Express 2(12), 3248–3258 (2011). [CrossRef] [PubMed]
  21. N. Ghosh, H. Patel, P. Gupta, “Depolarization of light in tissue phantoms - effect of a distribution in the size of scatterers,” Opt. Express 11(18), 2198–2205 (2003). [CrossRef] [PubMed]
  22. V. Sankaran, M. J. Everett, D. J. Maitland, J. T. Walsh., “Comparison of polarized-light propagation in biological tissue and phantoms,” Opt. Lett. 24(15), 1044–1046 (1999). [CrossRef] [PubMed]
  23. S. A. Prahl, M. J. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993). [CrossRef] [PubMed]
  24. R. Michels, F. Foschum, A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008). [CrossRef] [PubMed]
  25. A. J. Gomes, V. Backman, “Analytical light reflectance models for overlapping illumination and collection area geometries,” Appl. Opt. 51(33), 8013–8021 (2012). [PubMed]
  26. I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Müller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, M. S. Feld, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus,” Gastroenterology 120(7), 1620–1629 (2001). [CrossRef] [PubMed]
  27. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, A. A. Gavrilova, S. V. Kapralov, V. A. Grishaev, V. V. Tuchin, “Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm - art. no. 673401,” Proc. Soc. Photo-Opt. Ins. 6734, 73401 (2007).
  28. C. Holmer, K. S. Lehmann, J. Wanken, C. Reissfelder, A. Roggan, G. Mueller, H. J. Buhr, J. P. Ritz, “Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction,” J. Biomed. Opt. 12(1), 014025 (2007). [CrossRef] [PubMed]
  29. A. Amelink, H. J. Sterenborg, M. P. Bard, S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett. 29(10), 1087–1089 (2004). [CrossRef] [PubMed]
  30. A. Kim, M. Roy, F. Dadani, B. C. Wilson, “A fiber optic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients,” Opt. Express 18(6), 5580–5594 (2010). [CrossRef] [PubMed]
  31. R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008). [CrossRef] [PubMed]
  32. A. J. Gomes, V. Turzhitsky, S. Ruderman, V. Backman, “Monte Carlo model of the penetration depth for polarization gating spectroscopy: influence of illumination-collection geometry and sample optical properties,” Appl. Opt. 51(20), 4627–4637 (2012). [CrossRef] [PubMed]
  33. M. J. Everett, K. Schoenenberger, B. W. Colston, L. B. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23(3), 228–230 (1998). [CrossRef] [PubMed]
  34. A. J. Radosevich, J. D. Rogers, I. R. Capoğlu, N. N. Mutyal, P. Pradhan, V. Backman, “Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence,” J. Biomed. Opt. 17(11), 115001 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited