OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5465–5473

Switchable beaming from a nanoslit with metallic gratings controlled by the phase difference between incident beams

Kyuho Kim, Seung-Yeol Lee, Hansik Yun, Jun-Bum Park, and Byoungho Lee  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5465-5473 (2014)
http://dx.doi.org/10.1364/OE.22.005465


View Full Text Article

Enhanced HTML    Acrobat PDF (1655 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a switching method for optical beaming generated from a metal slit surrounded by surface gratings. The principle of the method is based on the interference of diffracted surface plasmon polaritons from the gratings which are controlled by the relative phases of two oblique incident beams that are illuminated on the metal slit. By adjusting the relative position of the interference pattern of the incident beams with respect to the metal slit, beaming from the proposed structure can be switched from the on- to the off-mode by virtue of the change in the symmetry of the generated surface plasmon polaritons. An experimental demonstration of the method is presented in which an electrically controlled interferometric configuration is used.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.2770) Other areas of optics : Gratings
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Plasmonics

History
Original Manuscript: January 23, 2014
Revised Manuscript: February 20, 2014
Manuscript Accepted: February 20, 2014
Published: February 28, 2014

Citation
Kyuho Kim, Seung-Yeol Lee, Hansik Yun, Jun-Bum Park, and Byoungho Lee, "Switchable beaming from a nanoslit with metallic gratings controlled by the phase difference between incident beams," Opt. Express 22, 5465-5473 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-5465


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbessen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  2. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. H. Raether, Surface Plasmons on Smooth Surfaces (Springer-Verlag, 1988).
  4. B. Lee, S. Kim, H. Kim, Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010). [CrossRef]
  5. B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt. 57(16), 1479–1497 (2010). [CrossRef]
  6. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009). [CrossRef]
  7. D. Choi, I.-M. Lee, J. Jung, J. Park, J.-H. Han, B. Lee, “Metallic-grating-based interconnector between surface plasmon polariton waveguides,” J. Lightwave Technol. 27(24), 5675–5680 (2009). [CrossRef]
  8. A. G. Brolo, R. Gordon, B. Leathem, K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004). [CrossRef] [PubMed]
  9. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002). [CrossRef] [PubMed]
  10. S. Kim, H. Kim, Y. Lim, B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007). [CrossRef]
  11. F. Hao, R. Wang, J. Wang, “A design methodology for directional beaming control by metal slit grooves structure,” J. Opt. 13(1), 015002 (2011). [CrossRef]
  12. Y. Lee, K. Hoshino, A. Alù, X. J. Zhang, “Efficient directional beaming from small apertures using surface-plasmon diffraction gratings,” Appl. Phys. Lett. 101(4), 041102 (2012). [CrossRef]
  13. H. Kim, J. Park, B. Lee, “Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings,” Opt. Lett. 34(17), 2569–2571 (2009). [CrossRef] [PubMed]
  14. E.-Y. Song, H. Kim, W. Y. Choi, B. Lee, “Active directional beaming by mechanical actuation of double-sided plasmonic surface gratings,” Opt. Lett. 38(19), 3827–3829 (2013). [CrossRef] [PubMed]
  15. Y. Lee, K. Hoshino, A. Alù, X. J. Zhang, “Tunable directive radiation of surface-plasmon diffraction gratings,” Opt. Express 21(3), 2748–2756 (2013). [CrossRef] [PubMed]
  16. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005). [CrossRef] [PubMed]
  17. S. Kim, Y. Lim, J. Park, B. Lee, “Bundle beaming from multiple subwavelength slits surrounded by dielectric surface gratings,” J. Lightwave Technol. 28(14), 2023–2029 (2010). [CrossRef]
  18. S.-Y. Lee, I.-M. Lee, J. Park, C.-Y. Hwang, B. Lee, “Dynamic switching of the chiral beam on the spiral plasmonic bull’s eye structure [Invited],” Appl. Opt. 50(31), G104–G112 (2011). [CrossRef] [PubMed]
  19. S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, B. Lee, “Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons,” Phys. Rev. Lett. 108(21), 213907 (2012). [CrossRef] [PubMed]
  20. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995). [CrossRef]
  21. M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995). [CrossRef]
  22. H. Kim, I. M. Lee, B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24(8), 2313–2327 (2007). [CrossRef] [PubMed]
  23. H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Application in Computational Nanophotonics (CRC Press, 2012).
  24. T. Chung, S.-Y. Lee, H. Yun, S.-W. Cho, Y. Lim, I.-M. Lee, B. Lee, “Plasmonics in nanoslit for manipulation of light,” IEEE Access 1(1), 371–383 (2013). [CrossRef]
  25. S.-Y. Lee, W. Lee, Y. Lee, J.-Y. Won, J. Kim, I.-M. Lee, B. Lee, “Phase-controlled directional switching of surface plasmon polaritons via beam interference,” Laser Photon. Rev. 7(2), 273–279 (2013). [CrossRef]
  26. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003). [CrossRef] [PubMed]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  28. D. A. Pommet, E. B. Grann, M. G. Moharam, “Effects of process errors on the diffraction characteristics of binary dielectric gratings,” Appl. Opt. 34(14), 2430–2435 (1995). [CrossRef] [PubMed]
  29. D. Pacifici, H. J. Lezec, H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited