OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5491–5511

Optimizing detection limits in whispering gallery mode biosensing

Matthew R. Foreman, Wei-Liang Jin, and Frank Vollmer  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5491-5511 (2014)
http://dx.doi.org/10.1364/OE.22.005491


View Full Text Article

Enhanced HTML    Acrobat PDF (3251 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical analysis of detection limits in swept-frequency whispering gallery mode biosensing modalities is presented based on application of the Cramér-Rao lower bound. Measurement acuity factors are derived assuming the presence of uncoloured and 1/ f Gaussian technical noise. Frequency fluctuations, for example arising from laser jitter or thermorefractive noise, are also considered. Determination of acuity factors for arbitrary coloured noise by means of the asymptotic Fisher information matrix is highlighted. Quantification and comparison of detection sensitivity for both resonance shift and broadening sensing modalities are subsequently given. Optimal cavity and coupling geometries are furthermore identified, whereby it is found that slightly under-coupled cavities outperform critically and over coupled ones.

© 2014 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(260.5740) Physical optics : Resonance
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(110.3055) Imaging systems : Information theoretical analysis
(240.3990) Optics at surfaces : Micro-optical devices

ToC Category:
Sensors

History
Original Manuscript: November 6, 2013
Revised Manuscript: January 6, 2014
Manuscript Accepted: February 3, 2014
Published: March 3, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Matthew R. Foreman, Wei-Liang Jin, and Frank Vollmer, "Optimizing detection limits in whispering gallery mode biosensing," Opt. Express 22, 5491-5511 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-5491


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Baaske, F. Vollmer, “Optical Resonator Biosensors: Molecular Diagnostic and Nanoparticle Detection on an Integrated Platform,” ChemPhysChem 13, 427–436 (2012). [CrossRef] [PubMed]
  2. K. J. Vahala, “Optical microcavities” Nature 424, 839–846 (2003). [CrossRef] [PubMed]
  3. F. Vollmer, S. Arnold, D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008). [CrossRef] [PubMed]
  4. M. Noto, F. Vollmer, D. Keng, I. Teraoka, S. Arnold, “Nanolayer characterization through wavelength multiplexing of a microsphere resonator,” Opt. Lett 30, 510–512 (2005). [CrossRef] [PubMed]
  5. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, A. Libchaber, “Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities,” Biophys. J. 85, 1974–1979 (2003). [CrossRef] [PubMed]
  6. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002). [CrossRef]
  7. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer., “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28, 272–274, (2003). [CrossRef] [PubMed]
  8. W. Ahn, S. V. Boriskina, Y. Hong, B. M. Reinhard, “Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules,” ACS Nano. 6, 951–960 (2012). [CrossRef]
  9. F. Vollmer, L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophot. 1, 267–291 (2012). [CrossRef]
  10. M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996). [CrossRef] [PubMed]
  11. M. R. Foreman, F. Vollmer, “Theory of resonance shifts of whispering gallery mode sensors by arbitrary plasmonic nanoparticles,” New. J. Phys. 15, 083006 (2013). [CrossRef]
  12. M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011). [CrossRef]
  13. V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano. Lett. 13, 3347–3351 (2013). [CrossRef] [PubMed]
  14. J. Zhu, S. J Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Phot. 4, 46–49 (2010). [CrossRef]
  15. J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, W. P. Bowen, “Back-scatter based whispering gallery mode sensing,” Sci. Rep. 3, 2974 (2013). [CrossRef] [PubMed]
  16. L. Xu, H. Li, X. Wu, L. Shang, L. Liu, “Ultra-sensitive label-free biosensing by using single-mode coupled microcavity laser,” Proc. SPIE, 7682, 76820C (2010). [CrossRef]
  17. T. McGarvey, A. Conjusteau, H. Mabuchi, “Finesse and sensitivity gain in cavity-enhanced absorption spectroscopy of biomolecules in solution,” Opt. Express, 14, 10441–10451 (2006). [CrossRef] [PubMed]
  18. J. D. Swaim, J. Knittel, W. P. Bowen, “Detection limits in whispering gallery biosensors with plasmonic enhancement,” Appl. Phys. Lett. 99, 243109 (2011). [CrossRef]
  19. L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mat. 25, 5616–5620 (2013). [CrossRef]
  20. S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, I. Teraoka, “Microparticle photophysics illuminates viral biosensing,” Faraday Disc. 137, 65–83, (2008). [CrossRef]
  21. J. L. Nadeau, V. S. Ilchenko, D. Kossakovski, G. H. Bearman, L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172 (2002). [CrossRef]
  22. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005). [CrossRef]
  23. X. Lopez-Yglesias, J. M. Gamba, R. C. Flagan, “The physics of extreme sensitivity in whispering gallery mode optical biosensors,” J. Appl. Phys. 111, 084701 (2012). [CrossRef]
  24. A. B. Matsko, A. A. Savchenkov, N. Yu, L. Maleki, “Whispering gallery mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. Am. B 24, 1324–1335 (2007). [CrossRef]
  25. M. L. Gorodetsky, I. S. Grudinin, “Fundamental thermal fluctuations in microspheres,” J. Opt. Soc. Am. B 21, 697–705 (2004). [CrossRef]
  26. W.-L. Jin, X. Yi, Y. Hu, B. Li, Y. Xiao, “Temperature-insensitive detection of low-concentration nanoparticles using a functionalized high-Q microcavity,” Appl. Opt. 52, 155–161 (2013). [CrossRef] [PubMed]
  27. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. Stabilization,” J. Opt. Soc. Am. B. 24, 2099–2997 (2007). [CrossRef]
  28. T. Carmon, L. Yang, K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004). [CrossRef] [PubMed]
  29. I. Teraoka, “Analysis of thermal stabilization of whispering gallery mode resonance,” Opt. Commun. 310212–216 (2014). [CrossRef]
  30. L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series Analysis, (Addison-Wesley Publishing Co., USA, 1991).
  31. C. Vignet, J.-F. Bercher, “Analysis of signals in the Fisher-Shannon information plane,” Phys. Lett. A 312, 27–33 (2003). [CrossRef]
  32. H. Cramér, Mathematical Methods of Statistics, (Princeton University Press, USA, 1946).
  33. M. R. Foreman, P. Török, “Information and resolution in electromagnetic optical systems,” Phys. Rev. A 82, 043835 (2010). [CrossRef]
  34. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, (Dover Publications, New York, 1970).
  35. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011). [CrossRef] [PubMed]
  36. A. Zeira, A. Nehorai, “Frequency domain Cramer-Rao bound for Gaussian Processes,” IEEE Trans. Acoust. Speech. Sig. Proc. 381063–1066 (1990). [CrossRef]
  37. Y.-F. Xiao, “Optical cavity QED in Solid-State Systems - Theory to Realization,” PhD thesis (University of Science and Technology of China, 2007).
  38. M. L. Gorodetsky, V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999). [CrossRef]
  39. M. Bass, C. M. DeCusatis, J. M. Enoch, Handbook of Optics, 3rd ed., Vol. 4. (McGraw-Hill, USA2009).
  40. G. M. Hale, M. R. Querry, “Optical Constants of Water in the 200-nm to 200-μm Wavelength Region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]
  41. M. Cai, O. Painter, K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85, 74–77 (2000). [CrossRef] [PubMed]
  42. J. Topolancik, F. Vollmer, “Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities,” Biophys. J. 92, 2223–2229 (2007). [CrossRef] [PubMed]
  43. D. Q. Chowdhury, S. C. Hill, P.W. Barber, “Morphology-dependent resonances in radially inhomogeneous spheres,” J. Opt. Soc. Am. A 8, 1702–1705 (1991). [CrossRef]
  44. I. Teraoka, S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B 23, 1381–1389 (2006). [CrossRef]
  45. S. Arnold, S. I. Shopova, S. Holler, “Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism,” Opt. Express 18, 281–287 (2010). [CrossRef] [PubMed]
  46. A. Mazzei A, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, V. Sandoghdar, “Controlled Coupling of Counterpropagating Whispering-Gallery Modes by a Single Rayleigh Scatterer: A Classical Problem in a Quantum Optical Light,” Phys. Rev. Lett. 99, 173603 (2007). [CrossRef] [PubMed]
  47. X. Yi, Y.-F. Xiao, Y. Feng, D.-Y. Qiu, J.-Y. Fan, Y. Li, Q. Gong, “Mode-splitting-based optical label-free biosensing with a biorecognition-covered microcavity,” J. Appl. Phys. 111, 114702 (2012). [CrossRef]
  48. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008). [CrossRef] [PubMed]
  49. M. R. Foreman, F. Vollmer, “Level repulsion in hybrid photonic-plasmonic microresonators for enhanced biodetection,” Phys. Rev. A 88, 023831 (2013). [CrossRef]
  50. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995). [CrossRef] [PubMed]
  51. Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85, 031805 (2012). [CrossRef]
  52. A. N. Bashkatov, E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003). [CrossRef]
  53. C. Lam, P. T. Leung, K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in mie scattering,” J. Opt. Soc. Am. B, 9, 1585–1592 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited