OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 5 — Mar. 10, 2014
  • pp: 5581–5589

Large parallelization of STED nanoscopy using optical lattices

Bin Yang, Frédéric Przybilla, Michael Mestre, Jean-Baptiste Trebbia, and Brahim Lounis  »View Author Affiliations


Optics Express, Vol. 22, Issue 5, pp. 5581-5589 (2014)
http://dx.doi.org/10.1364/OE.22.005581


View Full Text Article

Enhanced HTML    Acrobat PDF (1345 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

As a scanning microscope, STimulated Emission Depletion (STED) nanoscopy needs parallelization for fast wide-field imaging. Using well-designed optical lattices for depletion together with wide-field excitation and a fast camera for detection, we achieve large parallelization of STED nanoscopy. Wide field of view super-resolved images are acquired by scanning over a single unit cell of the optical lattice, which can be as small as 290 nm * 290 nm. Optical Lattice STED (OL-STED) imaging is demonstrated with a resolution down to 70 nm at 12.5 frames per second.

© 2014 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(180.0180) Microscopy : Microscopy
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Microscopy

History
Original Manuscript: December 2, 2013
Revised Manuscript: February 17, 2014
Manuscript Accepted: February 18, 2014
Published: March 4, 2014

Virtual Issues
Vol. 9, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Bin Yang, Frédéric Przybilla, Michael Mestre, Jean-Baptiste Trebbia, and Brahim Lounis, "Large parallelization of STED nanoscopy using optical lattices," Opt. Express 22, 5581-5589 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-5-5581


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009). [CrossRef] [PubMed]
  2. S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  3. M. J. Rust, M. Bates, X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006). [CrossRef] [PubMed]
  4. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  5. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000). [CrossRef] [PubMed]
  6. S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-High resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  7. M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. Ed. Engl. 47(33), 6172–6176 (2008). [CrossRef] [PubMed]
  8. A. Sharonov, R. M. Hochstrasser, “Wide-field subdiffraction imaging by accumulated binding of diffusing probes,” Proc. Natl. Acad. Sci. U.S.A. 103(50), 18911–18916 (2006). [CrossRef] [PubMed]
  9. G. Giannone, E. Hosy, F. Levet, A. Constals, K. Schulze, A. I. Sobolevsky, M. P. Rosconi, E. Gouaux, R. Tampé, D. Choquet, L. Cognet, “Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density,” Biophys. J. 99(4), 1303–1310 (2010). [CrossRef] [PubMed]
  10. J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008). [CrossRef] [PubMed]
  11. R. Heintzmann, T. M. Jovin, C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002). [CrossRef] [PubMed]
  12. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U. S. A. 102(37), 13081–13086 (2005). [CrossRef] [PubMed]
  13. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009). [CrossRef] [PubMed]
  14. E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. U. S. A. 109(3), E135–E143 (2012). [CrossRef] [PubMed]
  15. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009). [CrossRef]
  16. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U. S. A. 103(31), 11440–11445 (2006). [CrossRef] [PubMed]
  17. U. V. Nägerl, K. I. Willig, B. Hein, S. W. Hell, T. Bonhoeffer, “Live-cell imaging of dendritic spines by STED microscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(48), 18982–18987 (2008). [CrossRef] [PubMed]
  18. V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008). [CrossRef] [PubMed]
  19. S. W. Hell, M. Kroug, “Ground-state-depletion fluorescence microscopy: A concept for breaking the diffraction resolution limit,” Appl. Phys. B 60(5), 495–497 (1995). [CrossRef]
  20. M. Hofmann, C. Eggeling, S. Jakobs, S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U. S. A. 102(49), 17565–17569 (2005). [CrossRef] [PubMed]
  21. T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012).
  22. P. Bingen, M. Reuss, J. Engelhardt, S. W. Hell, “Parallelized STED fluorescence nanoscopy,” Opt. Express 19(24), 23716–23726 (2011). [CrossRef] [PubMed]
  23. A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, S. W. Hell, “Nanoscopy with more than 100,000 ‘doughnuts’,” Nat. Methods 10(8), 737–740 (2013). [CrossRef] [PubMed]
  24. B. Yang, F. Przybilla, M. Mestre, J.-B. Trebbia, and B. Lounis, “Massive parallelization of STED nanoscopy using optical lattices,” arXiv:1307.3833 [physics] (2013).
  25. A. Hemmerich, T. W. Hänsch, “Two-dimesional atomic crystal bound by light,” Phys. Rev. Lett. 70(4), 410–413 (1993). [CrossRef] [PubMed]
  26. G. Grynberg, B. Lounis, P. Verkerk, J.-Y. Courtois, C. Salomon, “Quantized motion of cold cesium atoms in two- and three-dimensional optical potentials,” Phys. Rev. Lett. 70(15), 2249–2252 (1993). [CrossRef] [PubMed]
  27. J. I. Cirac, P. Zoller, “Physics. How to manipulate cold atoms,” Science 301(5630), 176–177 (2003). [CrossRef] [PubMed]
  28. M. P. MacDonald, G. C. Spalding, K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003). [CrossRef] [PubMed]
  29. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008). [CrossRef] [PubMed]
  30. J. L. Stay, T. K. Gaylord, “Three-beam-interference lithography: contrast and crystallography,” Appl. Opt. 47(18), 3221–3230 (2008). [CrossRef] [PubMed]
  31. D. Wildanger, J. Bückers, V. Westphal, S. W. Hell, L. Kastrup, “A STED microscope aligned by design,” Opt. Express 17(18), 16100–16110 (2009). [CrossRef] [PubMed]
  32. G. Donnert, C. Eggeling, S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods 4(1), 81–86 (2007). [CrossRef] [PubMed]
  33. J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer, P. Tinnefeld, “A Reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes,” Angew. Chem. Int. Ed. Engl. 47(29), 5465–5469 (2008). [CrossRef] [PubMed]
  34. V. Westphal, S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005). [CrossRef] [PubMed]
  35. D. Wildanger, E. Rittweger, L. Kastrup, S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16(13), 9614–9621 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited