OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6400–6415

Photon emission rate engineering using graphene nanodisc cavities

Anshuman Kumar, Kin Hung Fung, M. T. Homer Reid, and Nicholas X. Fang  »View Author Affiliations

Optics Express, Vol. 22, Issue 6, pp. 6400-6415 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1549 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we present a systematic study of the plasmon modes in a system of vertically stacked pair of graphene discs. Quasistatic approximation is used to model the eigenmodes of the system. Eigen-response theory is employed to explain the spatial dependence of the coupling between the plasmon modes and a quantum emitter. These results show a good match between the semi-analytical calculation and full-wave simulations. Secondly, we have shown that it is possible to engineer the decay rates of a quantum emitter placed inside and near this cavity, using Fermi level tuning, via gate voltages and variation of emitter location and polarization. We highlighted that by coupling to the bright plasmon mode, the radiative efficiency of the emitter can be enhanced compared to the single graphene disc case, whereas the dark plasmon mode suppresses the radiative efficiency.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: February 11, 2014
Manuscript Accepted: February 28, 2014
Published: March 11, 2014

Anshuman Kumar, Kin Hung Fung, M. T. Homer Reid, and Nicholas X. Fang, "Photon emission rate engineering using graphene nanodisc cavities," Opt. Express 22, 6400-6415 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. E. Fort, S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D: Appl. Phys. 41, 013001 (2008). [CrossRef]
  3. M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009). [CrossRef] [PubMed]
  4. S. Lee, J. H. Ryu, K. Park, A. Lee, S.-Y. Lee, I.-C. Youn, C.-H. Ahn, S. M. Yoon, S.-J. Myung, D. H. Moon, X. Chen, K. Choi, I. C. Kwon, K. Kim, “Polymeric nanoparticle-based activatable near-infrared nanosensor for protease determination in vivo,” Nano Lett. 9, 4412–4416 (2009). PMID: . [CrossRef] [PubMed]
  5. R. R. Chance, A. H. Miller, A. Prock, R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63, 1589–1595 (1975). [CrossRef]
  6. S. Noda, M. Fujita, T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449–458 (1975). [CrossRef]
  7. J. B. Khurgin, A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37, 768–779 (2012). [CrossRef]
  8. A. K. Geim, K. S. Novoselov, “The rise of graphene,” Nature Mat. 6, 183–191 (2007). [CrossRef]
  9. M. Jablan, H. Buljan, M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009). [CrossRef]
  10. T. Ando, T. Nakanishi, “Impurity scattering in carbon nanotubes – absence of back scattering –,” J. Phys. Soc. Jpn 67, 1704–1713 (1998). [CrossRef]
  11. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004). [CrossRef] [PubMed]
  12. F. H. L. Koppens, D. E. Chang, F. J. Garcia de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011). [CrossRef] [PubMed]
  13. H. Yan, F. Xia, Z. Li, P. Avouris, “Plasmonics of coupled graphene micro-structures,” New J. Phys. 14, 125001 (2012). [CrossRef]
  14. L. A. Falkovsky, A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56, 281–284 (2007). [CrossRef]
  15. M. Jablan, M. Soljacic, H. Buljan, “Plasmons in graphene: Fundamental properties and potential applications,” Proceedings of the IEEE 101, 1689–1704 (2013). [CrossRef]
  16. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, J. Hone, “Boron nitride substrates for high-quality graphene electronic,” Nature Nanotech. 5, 722–726 (2010). [CrossRef]
  17. K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146, 351–355 (2008). [CrossRef]
  18. H. Reid, scuff-em suite version 0.95, http://homerreid.com/scuff-em .
  19. M. T. H. Reid, S. G. Johnson, “Efficient computation of power, force, and torque in bem scattering calculations,” (2013), http://arxiv.org/abs/1307.2966 .
  20. A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011). [CrossRef] [PubMed]
  21. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University, 2006). [CrossRef]
  22. A. N. Grigorenko, M. Polini, K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012). [CrossRef]
  23. T. Hümmer, F. J. García-Vidal, L. Martín-Moreno, D. Zueco, “Weak and strong coupling regimes in plasmonic qed,” Phys. Rev. B 87, 115419 (2013). [CrossRef]
  24. E. Waks, D. Sridharan, “Cavity qed treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82, 043845 (2010). [CrossRef]
  25. J.-M. Gérard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” in “Single Quantum Dots,”, vol. 90 of Topics in Applied Physics (SpringerBerlin Heidelberg, 2003), pp. 269–314. [CrossRef]
  26. A. L. Fetter, “Magnetoplasmons in a two-dimensional electron fluid: Disk geometry,” Phys. Rev. B 33, 5221–5227 (1986). [CrossRef]
  27. W. Wang, S. P. Apell, J. M. Kinaret, “Edge magnetoplasmons and the optical excitations in graphene disks,” Phys. Rev. B 86, 125450 (2012). [CrossRef]
  28. J. I. Gersten, “Disk plasma oscillations,” J. Chem. Phys. 77, 6285–6288 (1982). [CrossRef]
  29. K. H. Fung, A. Kumar, N. X. Fang, “Electron-photon scattering mediated by localized plasmons: A quantitative analysis by eigen-response theory,” Phys. Rev. B 89, 045408 (2014). [CrossRef]
  30. C. Vandenbem, D. Brayer, L. S. Froufe-Pérez, R. Carminati, “Controlling the quantum yield of a dipole emitter with coupled plasmonic modes,” Phys. Rev. B 81, 085444 (2010). [CrossRef]
  31. M. K. Schmidt, S. Mackowski, J. Aizpurua, “Control of single emitter radiation by polarization- and position-dependent activation of dark antenna modes,” Opt. Lett. 37, 1017–1019 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited