OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6428–6437

Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50nm resolution

Guanghui Yuan, Edward T. F. Rogers, Tapashree Roy, Zexiang Shen, and Nikolay I. Zheludev  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6428-6437 (2014)
http://dx.doi.org/10.1364/OE.22.006428


View Full Text Article

Enhanced HTML    Acrobat PDF (1716 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Heat-assisted magnetic recording (HAMR) is a future roadmap technology to overcome the superparamagnetic limit in high density magnetic recording. Existing HAMR schemes depend on a simultaneous magnetic stimulation and light-induced local heating of the information carrier. To achieve high-density recorded data, near-field plasmonic transducers have been proposed as light concentrators. Here we suggest and investigate in detail an alternative approach exploiting a far-field focusing device that can focus light into sub-50nm hot-spots in the magnetic recording layer using a laser source operating at 473nm. It is based on a recently introduced super-oscillatory flat lens improved with the use of solid immersion, giving an effective numerical aperture as high as 4.17. The proposed solution is robust and easy to integrate with the magnetic recording head thus offering a competitive advantage over plasmonic technology.

© 2014 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(100.6640) Image processing : Superresolution
(210.4590) Optical data storage : Optical disks
(050.1965) Diffraction and gratings : Diffractive lenses

ToC Category:
Optical Data Storage

History
Original Manuscript: October 7, 2013
Revised Manuscript: January 2, 2014
Manuscript Accepted: January 11, 2014
Published: March 12, 2014

Citation
Guanghui Yuan, Edward T. F. Rogers, Tapashree Roy, Zexiang Shen, and Nikolay I. Zheludev, "Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50nm resolution," Opt. Express 22, 6428-6437 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-6428


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, B. D. Terris, “Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4(7), 484–488 (2010). [CrossRef]
  2. M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y.-T. Hsia, M. F. Erden, “Heat-assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008). [CrossRef]
  3. W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009). [CrossRef]
  4. P. N. Minh, T. Ono, M. Esashi, “High throughput aperture near-field scanning optical microscopy,” Rev. Sci. Instrum. 71(8), 3111–3117 (2000). [CrossRef]
  5. X. Zhang, Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008). [CrossRef] [PubMed]
  6. N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  7. J. Rho, Z. L. Ye, Y. Xiong, X. B. Yin, Z. W. Liu, H. Choi, G. Bartal, X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010). [CrossRef] [PubMed]
  8. J. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Y. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, I. C. Hwang, L. J. Kaufman, C. W. Wong, P. Kim, K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460(7254), 498–501 (2009). [CrossRef]
  9. Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 218 (2011). [CrossRef] [PubMed]
  10. F. M. Huang, T. S. Kao, V. A. Fedotov, Y. F. Chen, N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008). [CrossRef] [PubMed]
  11. T. Roy, E. T. F. Rogers, N. I. Zheludev, “Sub-wavelength focusing meta-lens,” Opt. Express 21(6), 7577–7582 (2013). [CrossRef] [PubMed]
  12. E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013). [CrossRef]
  13. E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012). [CrossRef] [PubMed]
  14. E. Greenfield, R. Schley, I. Hurwitz, J. Nemirovsky, K. G. Makris, M. Segev, “Experimental generation of arbitrarily shaped diffractionless superoscillatory optical beams,” Opt. Express 21(11), 13425–13435 (2013). [CrossRef] [PubMed]
  15. S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615 (1990). [CrossRef]
  16. M. V. Berry, S. Popescu, “Evolution of quantum superoscillations and optical superresolution without evanescent waves,” J. Phys. Math. Gen. 39(22), 6965–6977 (2006). [CrossRef]
  17. F. M. Huang, Y. Chen, F. J. Garcia de Abajo, N. I. Zheludev, “Optical super-resolution through super-oscillations,” J. Opt. A, Pure Appl. Opt. 9(9), S285–S288 (2007). [CrossRef]
  18. F. M. Huang, N. Zheludev, Y. Chen, F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007). [CrossRef]
  19. N. I. Zheludev, “What diffraction limit?” Nat. Mater. 7(6), 420–422 (2008). [CrossRef] [PubMed]
  20. E. T. F. Rogers, N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013). [CrossRef]
  21. E. T. F. Rogers, N. I. Zheludev, V. Savinov, T. Roy, S. Savo, M. R. Dennis, and J. Lindberg, “Superoscillatory lens device,” GB patent application number GB1201936.0 and PCT patent application number PCT/GB2013/050114 (2012).
  22. A. M. H. Wong, G. V. Eleftheriades, “An optical super-microscope for far-field, real-time imaging beyond the diffraction limit,” Sci. Rep. 3, 1715 (2013). [CrossRef] [PubMed]
  23. D. Ganic, X. S. Gan, M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express 11(21), 2747–2752 (2003). [CrossRef] [PubMed]
  24. M. Mansuripur, “Distribution of light at and near the focus of high-numerical-aperture objectives,” J. Opt. Soc. Am. A 3(12), 2086–2093 (1986). [CrossRef]
  25. M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A 6(6), 786–805 (1989). [CrossRef]
  26. V. V. Kotlyar, A. A. Kovalev, “Nonparaxial propagation of a Gaussian optical vortex with initial radial polarization,” J. Opt. Soc. Am. A 27(3), 372–380 (2010). [CrossRef] [PubMed]
  27. H. P. Ye, C. W. Qiu, K. Huang, J. H. Teng, B. Luk’yanchuk, S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013). [CrossRef]
  28. T. Liu, J. B. Tan, J. Liu, H. T. Wang, “Vectorial design of super-oscillatory lens,” Opt. Express 21(13), 15090–15101 (2013). [CrossRef] [PubMed]
  29. N. Jin, Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations,” IEEE Trans. Antennas Propag. 55(3), 556–567 (2007). [CrossRef]
  30. Q. Wu, G. D. Feke, R. D. Grober, L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999). [CrossRef]
  31. D. E. Aspnes, A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983). [CrossRef]
  32. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994). [CrossRef]
  33. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38(23), 5004–5013 (1999). [CrossRef] [PubMed]
  34. J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98(18), 181109 (2011). [CrossRef]
  35. H. Fukuda, Y. Kobayashi, T. Tawa, S. Okazaki, “Performance of pupil-filtering stepper-lens system,” Microelectron. Eng. 27(1–4), 213–216 (1995). [CrossRef]
  36. F. X. Canning, “Corrected Fresnel coefficients for lossy materials,” in IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, 3–8 July (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited