OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6859–6867

Synthesis of highly focused fields with circular polarization at any transverse plane

David Maluenda, Rosario Martínez-Herrero, Ignasi Juvells, and Artur Carnicer  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6859-6867 (2014)
http://dx.doi.org/10.1364/OE.22.006859


View Full Text Article

Enhanced HTML    Acrobat PDF (2465 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a method for generating focused vector beams with circular polarization at any transverse plane. Based on the Richards-Wolf vector model, we derive analytical expressions to describe the propagation of these set of beams near the focal area. Since the polarization and the amplitude of the input beam are not uniform, an interferometric system capable of generating spatially-variant polarized beams has to be used. In particular, this wavefront is manipulated by means of spatial light modulators displaying computer generated holograms and subsequently focused using a high numerical aperture objective lens. Experimental results using a NA = 0.85 system are provided: irradiance and Stokes images of the focused field at different planes near the focal plane are presented and compared with those obtained by numerical simulation.

© 2014 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(260.5430) Physical optics : Polarization
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Physical Optics

History
Original Manuscript: January 23, 2014
Revised Manuscript: March 4, 2014
Manuscript Accepted: March 5, 2014
Published: March 17, 2014

Citation
David Maluenda, Rosario Martínez-Herrero, Ignasi Juvells, and Artur Carnicer, "Synthesis of highly focused fields with circular polarization at any transverse plane," Opt. Express 22, 6859-6867 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-6859


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Dorn, S. Quabis, G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev, Lett. 91, 233901 (2003). [CrossRef]
  2. N. Davidson, N. Bokor, “High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens,” Opt. Lett. 29, 1318–1320 (2004). [CrossRef] [PubMed]
  3. M. Leutenegger, R. Rao, R. A. Leitgeb, T. Lasser, “Fast focus field calculations,” Opt. Express 14, 11277–11291 (2006). [CrossRef] [PubMed]
  4. Y. Kozawa, S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24, 1793–1798 (2007). [CrossRef]
  5. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nature Photon. 2, 501–505 (2008). [CrossRef]
  6. G. Lerman, U. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express 16, 4567–4581 (2008). [CrossRef] [PubMed]
  7. X. Hao, C. Kuang, T. Wang, X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett. 35, 3928–3930 (2010). [CrossRef] [PubMed]
  8. S. N. Khonina, S. G. Volotovsky, “Controlling the contribution of the electric field components to the focus of a high-aperture lens using binary phase structures,” J. Opt. Soc. Am. A 27, 2188–2197 (2010). [CrossRef]
  9. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009). [CrossRef]
  10. R. Martinez-Herrero, I. Juvells, A. Carnicer, “On the physical realizability of highly focused electromagnetic field distributions,” Opt. Lett. 38, 2065–2067 (2013). [CrossRef] [PubMed]
  11. M. R. Foreman, S. S. Sherif, P. R. T. Munro, P. Török, “Inversion of the Debye-Wolf diffraction integral using an eigenfunction representation of the electric fields in the focal region,” Opt. Express 16, 4901–4917 (2008). [CrossRef] [PubMed]
  12. K. Jahn, N. Bokor, “Solving the inverse problem of high numerical aperture focusing using vector Slepian harmonics and vector Slepian multipole fields”, Opt. Commun. 288, 13–16 (2013). [CrossRef]
  13. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007). [CrossRef]
  14. H.-T. Wang, X.-L. Wang, Y. Li, J. Chen, C.-S. Guo, J. Ding, “A new type of vector fields with hybrid states of polarization,” Opt. Express 18, 10786–10795 (2010). [CrossRef] [PubMed]
  15. I. Moreno, C. Iemmi, J. Campos, M. Yzuel, “Jones matrix treatment for optical Fourier processors with structured polarization,” Opt. Express 19, 4583–4594 (2011). [CrossRef] [PubMed]
  16. F. Kenny, D. Lara, O. G. Rodríguez-Herrera, C. Dainty, “Complete polarization and phase control for focus-shaping in high-na microscopy,” Opt. Express 20, 14015–14029 (2012). [CrossRef] [PubMed]
  17. D. Maluenda, I. Juvells, R. Martínez-Herrero, A. Carnicer, “Reconfigurable beams with arbitrary polarization and shape distributions at a given plane,” Opt. Express 21, 5432–5439 (2013). [CrossRef] [PubMed]
  18. W. Han, Y. Yang, W. Cheng, Q. Zhan, “Vectorial optical field generator for the creation of arbitrarily complex fields,” Opt. Express 21, 20692–20706 (2013). [CrossRef] [PubMed]
  19. E. H. Waller, G. von Freymann, “Independent spatial intensity, phase and polarization distributions,” Opt. Express 21, 28167–28174 (2013). [CrossRef]
  20. Z.-Y. Rong, Y.-J. Han, S.-Z. Wang, C.-S Guo, “Generation of arbitrary vector beams with cascaded liquid crystal spatial light modulators,” Opt. Express 22, 1636–1644 (2014). [CrossRef] [PubMed]
  21. C.-S. Guo, Z.-Y. Rong, S.-Z. Wang, “Double-channel vector spatial light modulator for generation of arbitrary complex vector beams,” Opt. Lett. 39, 386–389 (2014). [CrossRef] [PubMed]
  22. G. Brakenhoff, P. Blom, P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Microsc. 117, 219–232 (1979). [CrossRef]
  23. C. Sheppard, A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322–4327 (2004). [CrossRef] [PubMed]
  24. K. Kitamura, K. Sakai, S. Noda, “Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam,” Opt. Express 18, 4518–4525 (2010). [CrossRef] [PubMed]
  25. D. Biss, T. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett. 28, 923–925 (2003). [CrossRef] [PubMed]
  26. D. Oron, E. Tal, Y. Silberberg, “Depth-resolved multiphoton polarization microscopy by third-harmonic generation,” Opt. Lett. 28, 2315–2317 (2003). [CrossRef] [PubMed]
  27. O. Masihzadeh, P. Schlup, R. A. Bartels, “Enhanced spatial resolution in third-harmonic microscopy through polarization switching,” Opt. Lett. 34, 1240–1242 (2009). [CrossRef] [PubMed]
  28. Y. Gorodetski, A. Niv, V. Kleiner, E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101, 043903 (2008). [CrossRef] [PubMed]
  29. L. Vuong, A. Adam, J. Brok, P. Planken, H. Urbach, “Electromagnetic spin-orbit interactions via scattering of subwavelength apertures,” Phys. Rev. Lett. 104, 083903 (2010). [CrossRef] [PubMed]
  30. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University, 2004). [CrossRef]
  31. Y. Inoue, V. Ramamurthy, Chiral Photochemistry (CRC, 2004).
  32. A. Turpin, Y. V. Loiko, T. K. Kalkandjiev, J. Mompart, “Multiple rings formation in cascaded conical refraction,” Opt. Lett. 38, 1455–1457 (2013). [CrossRef] [PubMed]
  33. B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” P. Roy. Soc. London A Mat. 253, 358–379 (1959). [CrossRef]
  34. V. Arrizón, L. González, R. Ponce, A. Serrano-Heredia, “Computer-generated holograms with optimum bandwidths obtained with twisted-nematic liquid-crystal displays,” Appl. Opt. 44, 1625–1634 (2005). [CrossRef] [PubMed]
  35. V. Arrizón, “Complex modulation with a twisted-nematic liquid-crystal spatial light modulator: double-pixel approach,” Opt. Lett. 28, 1359–1361 (2003). [CrossRef] [PubMed]
  36. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited