OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 6899–6904

Quantitative description of the self-healing ability of a beam

Xiuxiang Chu and Wei Wen  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 6899-6904 (2014)
http://dx.doi.org/10.1364/OE.22.006899


View Full Text Article

Enhanced HTML    Acrobat PDF (1444 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Quantitative description of the self-healing ability of a beam is very important for studying or comparing the self-healing ability of different beams. As describing the similarity by using the angle of two infinite-dimensional complex vectors in Hilbert space, the angle of two intensity profiles is proposed to quantitatively describe the self-healing ability of different beams. As a special case, quantitative description of the self-healing ability of a Bessel-Gaussian beam is studied. Results show that the angle of two intensity profiles can be used to describe the self-healing ability of arbitrary beams as the reconstruction distance for quantitatively describing the self-healing ability of Bessel beam. It offers a new method for studying or comparing the self-healing ability of different beams.

© 2014 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Physical Optics

History
Original Manuscript: February 26, 2014
Revised Manuscript: March 11, 2014
Manuscript Accepted: March 11, 2014
Published: March 17, 2014

Citation
Xiuxiang Chu and Wei Wen, "Quantitative description of the self-healing ability of a beam," Opt. Express 22, 6899-6904 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-6899


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, eds., Localized Waves: Theory and. Applications (John Wiley, 2008).
  2. V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85(18), 4001–4003 (2004). [CrossRef]
  3. X. Tsampoula, V. Garcés-Chávez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91(5), 053902 (2007). [CrossRef]
  4. M. Boguslawski, P. Rose, C. Denz, “Nondiffracting kagome lattice,” Appl. Phys. Lett. 98(6), 061111 (2011). [CrossRef]
  5. A. Chong, W. H. Renninger, D. N. Christodoulides, F. W. Wise, “Airy–Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4(2), 103–106 (2010). [CrossRef]
  6. M. V. Berry, N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979). [CrossRef]
  7. S. Vyas, Y. Kozawa, S. Sato, “Self-healing of tightly focused scalar and vector Bessel-Gauss beams at the focal plane,” J. Opt. Soc. Am. A 28(5), 837–843 (2011). [CrossRef] [PubMed]
  8. J. D. Ring, J. Lindberg, A. Mourka, M. Mazilu, K. Dholakia, M. R. Dennis, “Auto-focusing and self-healing of Pearcey beams,” Opt. Express 20(17), 18955–18966 (2012). [CrossRef] [PubMed]
  9. R. Cao, Y. Hua, C. Min, S. Zhu, X. C. Yuan, “Self-healing optical pillar array,” Opt. Lett. 37(17), 3540–3542 (2012). [CrossRef] [PubMed]
  10. M. Anguiano-Morales, A. Martínez, M. D. Iturbe-Castillo, S. Chávez-Cerda, N. Alcalá-Ochoa, “Self-healing property of a caustic optical beam,” Appl. Opt. 46(34), 8284–8290 (2007). [CrossRef] [PubMed]
  11. P. Vaity, R. P. Singh, “Self-healing property of optical ring lattice,” Opt. Lett. 36(15), 2994–2996 (2011). [CrossRef] [PubMed]
  12. J. Broky, G. A. Siviloglou, A. Dogariu, D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008). [CrossRef] [PubMed]
  13. I. A. Litvin, M. G. Mclaren, A. Forbes, “A conical wave approach to calculating Bessel–Gauss beam reconstruction after complex obstacles,” Opt. Commun. 282(6), 1078–1082 (2009). [CrossRef]
  14. M. Anguiano-Morales, M. M. Méndez-Otero, M. D. Iturbe-Castillo, S. Chávez-Cerda, “Conical dynamics of Bessel beams,” Opt. Eng. 46(7), 078001 (2007). [CrossRef]
  15. E. Greenfield, M. Segev, W. Walasik, O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett. 106(21), 213902 (2011). [CrossRef] [PubMed]
  16. Y. Kaganovsky, E. Heyman, “Wave analysis of Airy beams,” Opt. Express 18(8), 8440–8452 (2010). [CrossRef] [PubMed]
  17. R. Martínez-Herrero, I. Juvells, A. Carnicer, “On the physical realizability of highly focused electromagnetic field distributions,” Opt. Lett. 38(12), 2065–2067 (2013). [CrossRef] [PubMed]
  18. J. James, Mathematics Dictionary Mathematics Dictionary, 5th ed. (Springer, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited