OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 6 — Mar. 24, 2014
  • pp: 7229–7237

Polymeric slot waveguide interferometer for sensor applications

Marianne Hiltunen, Jussi Hiltunen, Petri Stenberg, Sanna Aikio, Lauri Kurki, Pasi Vahimaa, and Pentti Karioja  »View Author Affiliations


Optics Express, Vol. 22, Issue 6, pp. 7229-7237 (2014)
http://dx.doi.org/10.1364/OE.22.007229


View Full Text Article

Enhanced HTML    Acrobat PDF (998 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A refractive index sensor based on slot waveguide Young interferometer was developed in this work. The interferometer was fabricated on a polymer platform and operates at a visible wavelength of 633 nm. The phase shift of the interference pattern was measured with various concentrations of glucose-water solutions, utilizing both TE and TM polarization states. The sensor was experimentally observed to detect a refractive index difference of 6.4 × 10−6 RIU. Furthermore, the slot Young interferometer was found to compensate for temperature variations. The results of this work demonstrate that high performance sensing capability can be obtained with a polymeric slot Young interferometer, which can be fabricated by a simple molding process.

© 2014 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Sensors

History
Original Manuscript: November 28, 2013
Revised Manuscript: March 11, 2014
Manuscript Accepted: March 11, 2014
Published: March 20, 2014

Citation
Marianne Hiltunen, Jussi Hiltunen, Petri Stenberg, Sanna Aikio, Lauri Kurki, Pasi Vahimaa, and Pentti Karioja, "Polymeric slot waveguide interferometer for sensor applications," Opt. Express 22, 7229-7237 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-6-7229


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, Y. Sun, “Sensitive optical biosensors for unlabeled targets: A Review,” Anal. Chim. Acta 620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  2. P. V. Lambeck, “Integrated optical sensors for the chemical domain,” Meas. Sci. Technol. 17(8), R93–R116 (2006). [CrossRef]
  3. R. Bruck, E. Melnik, P. Muellner, R. Hainberger, M. Lämmerhofer, “Integrated polymer-based Mach-Zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron. 26(9), 3832–3837 (2011). [CrossRef] [PubMed]
  4. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007). [CrossRef] [PubMed]
  5. A. Ksendzov, Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett. 30(24), 3344–3346 (2005). [CrossRef] [PubMed]
  6. F. Prieto, B. Sep lveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14(8), 907–912 (2003). [CrossRef]
  7. A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt. 42(28), 5649–5660 (2003). [CrossRef] [PubMed]
  8. J. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008). [CrossRef] [PubMed]
  9. L. Wang, J. Ren, X. Han, T. Claes, X. Jian, P. Bienstman, R. Baets, M. Zhao, G. Morthier, “A label-free optical biosensor built on a low-cost polymer platform,” Photonics Journal 4, 920–930 (2012).
  10. R. Gupta, N. J. Goddard, “A polymeric waveguide resonant mirror (RM) device for detection in microfluidic flow cells,” Analyst (Lond.) 138(11), 3209–3215 (2013). [CrossRef] [PubMed]
  11. M. Wang, J. Hiltunen, C. Liedert, S. Pearce, M. Charlton, L. Hakalahti, P. Karioja, R. Myllylä, “Highly sensitive biosensor based on UV-imprinted layered polymeric-inorganic composite waveguides,” Opt. Express 20(18), 20309–20317 (2012). [CrossRef] [PubMed]
  12. C. Y. Chao, W. Fung, L. J. Guo, “Polymer microring resonator for biochemical sensing applications,” J. of Selected Topics in Quantum Electronics. 12(1), 134–142 (2006). [CrossRef]
  13. Q. Xu, V. R. Almeida, R. R. Panepucci, M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004). [CrossRef] [PubMed]
  14. F. Dell’Olio, V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007). [CrossRef] [PubMed]
  15. V. M. N. Passaro, F. Dell’olio, C. Ciminelli, M. N. Armenise, “Efficient chemical sensing by coupled slot SOI waveguides,” Sensors (Basel) 9(2), 1012–1032 (2009). [CrossRef] [PubMed]
  16. C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010). [CrossRef] [PubMed]
  17. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32(21), 3080–3082 (2007). [CrossRef] [PubMed]
  18. K. B. Gylfason, C. F. Carlborg, A. Kaźmierczak, F. Dortu, H. Sohlström, L. Vivien, C. A. Barrios, W. van der Wijngaart, G. Stemme, “On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array,” Opt. Express 18(4), 3226–3237 (2010). [CrossRef] [PubMed]
  19. P. Bettotti, A. Pitanti, E. Rigo, F. De Leonardis, V. M. N. Passaro, L. Pavesi, “Modeling of slot waveguide sensors based on polymeric materials,” Sensors (Basel) 11(12), 7327–7340 (2011). [CrossRef] [PubMed]
  20. H. Sun, A. Chen, L. R. Dalton, “Enhanced evanescent confinement in multiple-slot waveguides and its application in biochemical sensing,” Photonics Journal 1(1), 48–57 (2009). [CrossRef]
  21. M. Hiltunen, E. Heinonen, J. Hiltunen, J. Puustinen, J. Lappalainen, P. Karioja, “Nanoimprint fabrication of slot waveguides,” Photonics Journal 5, 2200808 (2013).
  22. M. Hiltunen, J. Hiltunen, P. Stenberg, J. Petäjä, E. Heinonen, P. Vahimaa, P. Karioja, “Polymeric slot waveguide at visible wavelength,” Opt. Lett. 37(21), 4449–4451 (2012). [CrossRef] [PubMed]
  23. Ormocer datasheet, MicroResistsTechnology.
  24. FimmWave Software, Photon Design Ltd, Oxford, UK.
  25. A. F. Fucaloro, Y. Pu, K. Cha, A. Williams, K. Conrad, “Partial molar volumes and refractions of aqueous solutions of fructose, glucose, mannose and sucrose at 15.00, 20.00 and 25.00°C,” J. Solution Chem. 36(1), 61–80 (2007). [CrossRef]
  26. M. Wang, J. Hiltunen, C. Liedert, L. Hakalahti, R. Myllylä, “An integrated Young interferometer based on UV-imprinted polymer waveguides for label-free biosensing applications,” J. Europ. Opt. Soc. Rap. Public 7, 12019 (2012). [CrossRef]
  27. M. Daimon, A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46(18), 3811–3820 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited