OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7492–7502

Spectral broadening in continuous-wave intracavity Raman lasers

Gerald M. Bonner, Jipeng Lin, Alan J. Kemp, Jiyang Wang, Huaijin Zhang, David J. Spence, and Helen M. Pask  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 7492-7502 (2014)
http://dx.doi.org/10.1364/OE.22.007492


View Full Text Article

Enhanced HTML    Acrobat PDF (1806 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spectral broadening of the fundamental field in intracavity Raman lasers is investigated. The mechanism for the spectral broadening is discussed and the effect is compared in two lasers using Raman crystals with different Raman linewidths. The impact of the spectral broadening on the effective Raman gain is analyzed, and the use of etalons to limit the fundamental spectral width is explored. It was found that an improvement in output power could be obtained by using etalons to limit the fundamental spectrum to a single narrow peak.

© 2014 Optical Society of America

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(140.3580) Lasers and laser optics : Lasers, solid-state
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 10, 2014
Revised Manuscript: March 15, 2014
Manuscript Accepted: March 16, 2014
Published: March 24, 2014

Citation
Gerald M. Bonner, Jipeng Lin, Alan J. Kemp, Jiyang Wang, Huaijin Zhang, David J. Spence, and Helen M. Pask, "Spectral broadening in continuous-wave intracavity Raman lasers," Opt. Express 22, 7492-7502 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-7492


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Progress in Quant. Electron. 32, 121–158 (2008).
  2. A. J. Lee, D. J. Spence, J. A. Piper, H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010). [CrossRef] [PubMed]
  3. A. Lee, H. M. Pask, D. J. Spence, “Control of cascading in multiple-order Raman lasers,” Opt. Lett. 37(18), 3840–3842 (2012). [CrossRef] [PubMed]
  4. A. J. Lee, H. M. Pask, J. A. Piper, H. Zhang, J. Wang, “An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission,” Opt. Express 18(6), 5984–5992 (2010). [CrossRef] [PubMed]
  5. X. Li, A. J. Lee, Y. Huo, H. Zhang, J. Wang, J. A. Piper, H. M. Pask, D. J. Spence, “Managing SRS competition in a miniature visible Nd:YVO4/BaWO4 Raman laser,” Opt. Express 20(17), 19305–19312 (2012). [CrossRef] [PubMed]
  6. P. Dekker, H. M. Pask, D. J. Spence, J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007). [CrossRef] [PubMed]
  7. P. Dekker, H. M. Pask, J. A. Piper, “All-solid-state 704 mW continuous-wave yellow source based on an intracavity, frequency-doubled crystalline Raman laser,” Opt. Lett. 32(9), 1114–1116 (2007). [CrossRef] [PubMed]
  8. L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B-Lasers and Optics 94(4), 553–557 (2009). [CrossRef]
  9. L. Fan, Y. X. Fan, H. T. Wang, “A compact efficient continuous-wave self-frequency Raman laser with a composite YVO4/Nd:YVO4/ YVO4 crystal,” Appl. Phys. B 101(3), 493–496 (2010). [CrossRef]
  10. L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009). [CrossRef] [PubMed]
  11. V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, A. N. Titov, “Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B-Lasers and Optics 88(4), 499–501 (2007). [CrossRef]
  12. D. C. Parrotta, A. J. Kemp, M. D. Dawson, J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE Selected Topics in Quant. Electron. 19, # 1400108 (2013).
  13. Y. Sato, T. Taira, “Temperature dependencies of stimulated emission cross section for Nd-doped solid-state laser materials,” Opt. Mater. Express 2(8), 1076–1087 (2012). [CrossRef]
  14. Y. Sato, T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process,” IEEE Selected Topics in Journal of Quant. Electron. 11, 613–620 (2005).
  15. Y. Sato, T. Taira, “Spectroscopic properties of Neodymium-doped Yttrium Orthovanadate single crystals with high-resolution measurement,” Jpn. J. Appl. Phys. 41(1), 5999–6002 (2002). [CrossRef]
  16. U. Keller, T. H. Chiu, “Resonant passive mode-locked Nd:YLF laser,” IEEE J. Quantum Electron. 28(7), 1710–1721 (1992). [CrossRef]
  17. T. T. Basiev, A. A. Sobol, Y. K. Voronko, P. G. Zverev, “Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers,” Opt. Mater. 15(3), 205–216 (2000). [CrossRef]
  18. T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999). [CrossRef] [PubMed]
  19. G. M. Bonner, H. M. Pask, A. J. Lee, A. J. Kemp, J. Wang, H. Zhang, T. Omatsu, “Measurement of thermal lensing in a CW BaWO4 intracavity Raman laser,” Opt. Express 20(9), 9810–9818 (2012). [CrossRef] [PubMed]
  20. J. J. Zayhowski, “The effects of spatial hole burning and energy diffusion on the single-mode operation of standing-wave lasers,” IEEE J. Quantum Electron. 26(12), 2052–2057 (1990). [CrossRef]
  21. A. Penzkofer, A. Laubereau, W. Kaiser, “High intensity Raman interactions,” Progress in Quant. Electron. 6, 55–140 (1982).
  22. J. Eggleston, R. Byer, “Steady-state stimulated Raman scattering by a multimode laser,” IEEE J. Quantum Electron. 16(8), 850–853 (1980). [CrossRef]
  23. E. A. Stappaerts, H. Komine, W. H. Long., “Gain enhancement in Raman amplifiers with broadband pumping,” Opt. Lett. 5(1), 4–6 (1980). [CrossRef] [PubMed]
  24. A. T. Georges, “Statistical theory of Raman amplification and spontaneous generation in dispersive media pumped with a broadband laser,” Phys. Rev. A 39(4), 1876–1886 (1989). [CrossRef] [PubMed]
  25. A. Z. Grasiuk, I. G. Zubarev, “High-power tunable IR Raman lasers,” Appl. Phys. (Berl.) 17(3), 211–232 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited