OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7514–7523

Depth-enhanced 2-D optical coherence tomography using complex wavefront shaping

Hyeonseung Yu, Jaeduck Jang, Jaeguyn Lim, Jung-Hoon Park, Wooyoung Jang, Ji-Yeun Kim, and YongKeun Park  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 7514-7523 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1255 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the enhancement in the obtained signal and penetration depth of 2-D depth-resolved images that were taken by shaping the incident wavefront in optical coherence tomography (OCT). Limitations in the penetration depth and signal to noise ratio (SNR) in OCT are mainly due to multiple scattering, which have been effectively suppressed by controlling the incident wavefront using a digital mirror device (DMD) in combination with spectral-domain OCT. The successful enhancements in the penetration depth and SNR are demonstrated in a wide-range of tissue phantoms, reaching depth enhancement of up to 92%. The hidden structures inside a tissue phantom that could not be seen in conventional OCT are clearly revealed through our proposed system. Its 2-D imaging capability, assisted by further optimization of the system for real-time acquisition speed will boost wide-spread use of OCT for in-vivo tissue diagnosis.

© 2014 Optical Society of America

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(110.0113) Imaging systems : Imaging through turbid media
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Imaging Systems

Original Manuscript: February 27, 2014
Manuscript Accepted: March 13, 2014
Published: March 24, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Hyeonseung Yu, Jaeduck Jang, Jaeguyn Lim, Jung-Hoon Park, Wooyoung Jang, Ji-Yeun Kim, and YongKeun Park, "Depth-enhanced 2-D optical coherence tomography using complex wavefront shaping," Opt. Express 22, 7514-7523 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Sebbah, Waves and Imaging through Complex Media (Kluwer Academic Publishers, 2001).
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  3. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29(5), 480–482 (2004). [CrossRef] [PubMed]
  4. B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, P. Lambelet, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A 22(7), 1369–1379 (2005). [CrossRef] [PubMed]
  5. J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E. Brezinski, “Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1-2), 9–25 (2000). [CrossRef] [PubMed]
  6. M. Bashkansky, J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25(8), 545–547 (2000). [CrossRef] [PubMed]
  7. B. Hermann, E. J. Fernndez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, P. Artal, “Adaptive-optics ultrahigh-resolution optical coherencetomography,” Opt. Lett. 29, 2142–2144 (2004).
  8. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005). [CrossRef] [PubMed]
  9. M. Rueckel, J. A. Mack-Bucher, W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006). [CrossRef] [PubMed]
  10. K. Kurokawa, K. Sasaki, S. Makita, M. Yamanari, B. Cense, Y. Yasuno, “Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography,” Opt. Express 18(8), 8515–8527 (2010). [CrossRef] [PubMed]
  11. N. Iftimia, B. E. Bouma, G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003). [CrossRef] [PubMed]
  12. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt. 8(3), 565–569 (2003). [CrossRef] [PubMed]
  13. R. Fiolka, K. Si, M. Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express 20(15), 16532–16543 (2012). [CrossRef]
  14. J. Jang, J. Lim, H. Yu, H. Choi, J. Ha, J. H. Park, W. Y. Oh, W. Jang, S. Lee, Y. Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013). [CrossRef] [PubMed]
  15. Y. Choi, T. R. Hillman, W. Choi, N. Lue, R. R. Dasari, P. T. C. So, W. Choi, Z. Yaqoob, “Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium,” Phys. Rev. Lett. 111(24), 243901 (2013). [CrossRef] [PubMed]
  16. A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003). [CrossRef]
  17. D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012). [CrossRef] [PubMed]
  18. D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express 19(5), 4017–4029 (2011). [CrossRef] [PubMed]
  19. B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15(3), 030507 (2010). [CrossRef] [PubMed]
  20. B. W. Pogue, M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006). [CrossRef] [PubMed]
  21. S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993). [CrossRef] [PubMed]
  22. D. A. Boas, C. Pitris, and N. Ramanujam, Handbook of biomedical optics (CRC, 2011).
  23. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010). [CrossRef] [PubMed]
  24. A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012). [CrossRef]
  25. J. H. Park, C. Park, H. Yu, Y. H. Cho, Y. K. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express 20(15), 17010–17016 (2012). [CrossRef]
  26. J. H. Park, C. H. Park, H. Yu, Y. H. Cho, Y. K. Park, “Active spectral filtering through turbid media,” Opt. Lett. 37(15), 3261–3263 (2012). [CrossRef] [PubMed]
  27. Y.-K. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express 17(15), 12285–12292 (2009). [CrossRef] [PubMed]
  28. I. M. Vellekoop, A. Lagendijk, A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010). [CrossRef]
  29. J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, Y. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited