OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7644–7656

Enhancing surface plasmon leakage at the metal/semiconductor interface: towards increased light outcoupling efficiency in organic optoelectronics

Jesse Kohl, Joseph A. Pantina, and Deirdre M. O’Carroll  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 7644-7656 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1612 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The light outcoupling efficiency of organic light-emitting optoelectronic devices is severely limited by excitation of tightly bound surface plasmon polaritons at the metal electrodes. We present a theoretical study of an organic semiconductor-silver-SiO2 waveguide and demonstrate that by simple tuning of metal film thickness and the emission regime of the organic semiconductor, a significant fraction of surface plasmon polariton mode amplitude is leaked into the active semiconductor layer, thereby decreasing the amount of optical energy trapped by the metal. At visible wavelengths, mode leakage increases by factors of up to 3.8 and 88 by tuning metal film thickness and by addition of gain, respectively.

© 2014 Optical Society of America

OCIS Codes
(230.0250) Optical devices : Optoelectronics
(230.3670) Optical devices : Light-emitting diodes
(240.6680) Optics at surfaces : Surface plasmons
(250.3680) Optoelectronics : Light-emitting polymers
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: July 15, 2013
Revised Manuscript: October 2, 2013
Manuscript Accepted: November 1, 2013
Published: March 26, 2014

Jesse Kohl, Joseph A. Pantina, and Deirdre M. O’Carroll, "Enhancing surface plasmon leakage at the metal/semiconductor interface: towards increased light outcoupling efficiency in organic optoelectronics," Opt. Express 22, 7644-7656 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. J. Scholz, J. Frischeisen, A. Jaeger, D. S. Setz, T. C. G. Reusch, W. Brütting, “Extraction of surface plasmons in organic light-emitting diodes via high-index coupling,” Opt. Express 20(S2), A205–A212 (2012). [CrossRef] [PubMed]
  2. L. H. Smith, J. A. E. Wasey, W. L. Barnes, “Light outcoupling efficiency of top-emitting organic light-emitting diodes,” Appl. Phys. Lett. 84(16), 2986–2988 (2004). [CrossRef]
  3. J. Frischeisen, D. Yokoyama, A. Endo, C. Adachi, W. Brütting, “Increased light outcoupling efficiency in dye-doped small molecule organic light-emitting diodes with horizontally oriented emitters,” Org. Electron. 12(5), 809–817 (2011). [CrossRef]
  4. S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, W. Brütting, “Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency,” J. Appl. Phys. 104(12), 123109 (2008). [CrossRef]
  5. L. H. Smith, J. A. E. Wasey, I. D. W. Samuel, W. L. Barnes, “Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield,” Adv. Funct. Mater. 15(11), 1839–1844 (2005). [CrossRef]
  6. B. Koo, S. Kim, J.-L. Lee, “Indium-tin-oxide free transparent electrodes using a plasmon frequency conversion layer,” J. Mater. Chem. C 1(2), 246–252 (2012). [CrossRef]
  7. K. H. An, M. Shtein, K. P. Pipe, “Surface plasmon mediated energy transfer of electrically-pumped excitons,” Opt. Express 18(5), 4041–4048 (2010). [CrossRef] [PubMed]
  8. G. Colas des Francs, P. Bramant, J. Grandidier, A. Bouhelier, J.-C. Weeber, A. Dereux, “Optical gain, spontaneous and stimulated emission of surface plasmon polaritons in confined plasmonic waveguide,” Opt. Express 18(16), 16327–16334 (2010). [CrossRef] [PubMed]
  9. S. Lal, S. Link, N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007). [CrossRef]
  10. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  11. H. J. Queisser, “Photovoltaic conversion at reduce dimensions,” Physica E 14(1-2), 1–10 (2002). [CrossRef]
  12. A. E. Ostfeld, D. Pacifici, “Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics,” Appl. Phys. Lett. 98(11), 113112 (2011). [CrossRef]
  13. J. Bellessa, C. Bonnand, J. C. Plenet, J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004). [CrossRef] [PubMed]
  14. S. Chénais, S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012). [CrossRef]
  15. F. A. Burton, S. A. Cassidy, “A complete description of the dispersion relation for thin metal film plasmon-polaritons,” J. Lightwave Technol. 8(12), 1843–1849 (1990). [CrossRef]
  16. G. I. Stegeman, J. J. Burke, D. G. Hall, “Surface-polaritonlike waves guided by thin, lossy metal films,” Opt. Lett. 8(7), 383–385 (1983). [CrossRef] [PubMed]
  17. P. Ferguson, R. F. Wallis, M. Belakhovsky, J. P. Jadot, J. Tomkinson, “Surface plasma waves in silver and gold,” Surf. Sci. 76(2), 483–498 (1978). [CrossRef]
  18. F. Yang, J. R. Sambles, G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter 44(11), 5855–5872 (1991). [CrossRef] [PubMed]
  19. J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986). [CrossRef] [PubMed]
  20. M. N. Zervas, “Surface plasmon-polariton waves guided by thin metal films,” Opt. Lett. 16(10), 720–722 (1991). [CrossRef] [PubMed]
  21. M. Campoy-Quiles, G. Heliotis, R. Xia, M. Ariu, M. Pintani, P. Etchegoin, D. D. C. Bradley, “Ellipsometric characterization of the optical constants of polyfluorene gain media,” Adv. Funct. Mater. 15(6), 925–933 (2005). [CrossRef]
  22. The value of the phase of the first oscillator term is misprinted in [21]. Donal D. C. Bradley, Director of the Centre for Plastic Electronics, Lee-Lucas Professor of Experimental Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK provided the correct value of −0.981 (personal communication in 2012).
  23. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press,1985).
  24. G. Heliotis, D. D. C. Bradley, M. Goossens, S. Richardson, G. A. Turnbull, I. D. W. Samuel, “Operating characteristics of a travelling-wave semiconducting polymer optical amplifier,” Appl. Phys. Lett. 85(25), 6122–6124 (2004). [CrossRef]
  25. R. Xia, M. Campoy-Quiles, G. Heliotis, P. Stavrinou, K. S. Whitehead, D. D. C. Bradley, “Significant improvements in the optical gain properties of oriented liquid crystalline conjugated polymer films,” Synth. Met. 155(2), 274–278 (2005). [CrossRef]
  26. N. Liu, A. Ruseckas, N. A. Montgomery, I. D. W. Samuel, G. A. Turnbull, “Semiconducting polymer waveguides for end-fired ultra-fast optical amplifiers,” Opt. Express 17(24), 21452–21458 (2009). [CrossRef] [PubMed]
  27. M. P. Nezhad, K. Tetz, Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004). [CrossRef] [PubMed]
  28. E. Kretschmann, “Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6(2), 185187 (1972). [CrossRef]
  29. A. Kolomenski, A. Kolomenskii, J. Noel, S. Peng, H. Schuessler, “Propagation length of surface plasmons in a metal film with roughness,” Appl. Opt. 48(30), 5683–5691 (2009). [CrossRef] [PubMed]
  30. D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12(10), 4036–4046 (1975). [CrossRef]
  31. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited