OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7756–7764

Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K

Seth Melgaard, Denis Seletskiy, Victor Polyak, Yemane Asmerom, and Mansoor Sheik-Bahae  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 7756-7764 (2014)
http://dx.doi.org/10.1364/OE.22.007756


View Full Text Article

Enhanced HTML    Acrobat PDF (1698 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Systematic study of Yb doping concentration in the Yb:YLF cryocoolers by means of optical and mass spectroscopies has identified iron ions as the main source of the background absorption. Parasitic absorption was observed to decrease with Yb doping, resulting in optical cooling of a 10% Yb:YLF sample to 114K ± 1K, with room temperature cooling power of 750 mW and calculated minimum achievable temperature of 93 K.

© 2014 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3320) Lasers and laser optics : Laser cooling

ToC Category:
Materials

History
Original Manuscript: March 5, 2014
Manuscript Accepted: March 10, 2014
Published: March 26, 2014

Citation
Seth Melgaard, Denis Seletskiy, Victor Polyak, Yemane Asmerom, and Mansoor Sheik-Bahae, "Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K," Opt. Express 22, 7756-7764 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-7756


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Pringsheim, “Zwei bemerkungen uber den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. 57(11–12), 739–746 (1929). [CrossRef]
  2. M. Sheik-Bahae, R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007). [CrossRef]
  3. M. Sheik-Bahae, R. I. Epstein, “Laser cooling of solids,” Laser Photonics Rev. 3(1–2), 67–84 (2009). [CrossRef]
  4. L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. 10, 503–506 (1946).
  5. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995). [CrossRef]
  6. M. P. Hehlen, “Design and fabrication of rare-earth-doped laser cooling materials,” in Optical Refrigeration: Science and Applications of Laser Cooling of Solids, R. I. Epstein and M. Sheik-Bahae, eds. (Wiley-VCH, 2009).
  7. C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20(5), 1066–1074 (2003). [CrossRef]
  8. J. Thiede, J. Distel, S. R. Greenfield, R. I. Epstein, “Cooling to 208k by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005). [CrossRef]
  9. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000). [CrossRef] [PubMed]
  10. J. Fernandez, A. J. Garcia-Adeva, R. Balda, “Anti-stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006). [CrossRef] [PubMed]
  11. N. J. Condon, S. R. Bowman, S. P. O’Connor, R. S. Quimby, C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5.,” Opt. Express 17(7), 5466–5472 (2009). [CrossRef] [PubMed]
  12. G. Nemova, R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010). [CrossRef]
  13. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010). [CrossRef]
  14. S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38(9), 1588–1590 (2013). [CrossRef] [PubMed]
  15. R. Epstein and M. Sheik-Bahae, Optical Refrigeration: Science and Applications of Laser Cooling of Solids (Wiley-VCH, 2009).
  16. D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express 19(19), 18229–18236 (2011). [CrossRef] [PubMed]
  17. M. P. Hehlen, R. I. Epstein, H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007). [CrossRef]
  18. W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, M. P. Hehlen, “Preparation and characterization of high-purity metal fluorides for photonic applications,” J. Am. Ceram. Soc. 94(9), 2896–2901 (2011). [CrossRef]
  19. D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photonics 4(1), 78–107 (2012). [CrossRef]
  20. N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, P. Laporta, “Diode-pumped passively mode-locked Yb:YLF laser,” Opt. Express 16(5), 2922–2927 (2008). [CrossRef] [PubMed]
  21. G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, J. C. Gâcon, “From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals,” Mol. Phys. 102, 1119–1132 (2004). [CrossRef]
  22. I. M. Ranieri, S. L. Baldochi, A. M. E. Santo, L. Gomes, L. C. Courrol, L. V. G. Tarelho, W. de Rossi, J. R. Berretta, F. E. Costa, G. E. C. Nogueira, N. U. Wetter, D. M. Zezell, N. D. Vieira, S. P. Morato, “Growth of LiYF4 crystals doped with holmium, erbium and thulium,” J. Cryst. Growth 166(1–4), 423–428 (1996). [CrossRef]
  23. S. D. Melgaard, “Cryogenic Optical Refrigeration: Laser cooling of solids below 123K,” Ph. D. Dissertation, University of New Mexico, Albuquerque, NM (2013).
  24. G. Cowan, Statistical Data Analysis (Clarendon, 1998).
  25. L.-S. Huang, K.-C. Lin, “Detection of iron species using inductively coupled plasma mass spectrometry under cold plasma temperature conditions,” Spectrochim. Acta, B At. Spectrosc. 56(1), 123–128 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited