OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8349–8366

The analysis of all-optical logic gates based with tunable femtosecond soliton self-frequency shift

Ming Xu, Yan Li, Tiansheng Zhang, Jun Luo, Jianhua Ji, and Shuwen Yang  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 8349-8366 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1396 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A type of tunable femtosecond soliton logic gate based on fiber Raman Self-Frequency Shift (SFS) is studied in this paper. The Raman SFSs of femtosecond solitons governed by the Newton’s cradle mechanism in logic gate are analyzed with an Improved Split-Step Fast Fourier Transform (ISSFFT) algorithm. The impact factors of the solitonic pulse frequency shift and temporal time shift, which are included the Third-Order Dispersion (TOD) effect, are investigated. The existing theoretical equation of SFS is modified into a new expression for this type of soliton logic gate. A lower switching power and the small size of the soliton logic gate device is designed to realize the logic functions of AND, NOT, and XOR. The results demonstrate that the logic gate based on SFS is belonged to the asynchronous system and can be achieved with Milli-Watt switching power and good extinction ratio. ISSFFT is effective and accurately to analyze higher-order dispersive and nonlinear effects in the logic gates.

© 2014 Optical Society of America

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.5650) Nonlinear optics : Raman effect
(200.4660) Optics in computing : Optical logic
(320.7140) Ultrafast optics : Ultrafast processes in fibers

ToC Category:
Optics in Computing

Original Manuscript: February 4, 2014
Revised Manuscript: March 4, 2014
Manuscript Accepted: March 5, 2014
Published: April 1, 2014

Ming Xu, Yan Li, Tiansheng Zhang, Jun Luo, Jianhua Ji, and Shuwen Yang, "The analysis of all-optical logic gates based with tunable femtosecond soliton self-frequency shift," Opt. Express 22, 8349-8366 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. H. Kim, Y. M. Jhon, Y. T. Byun, S. Lee, D. H. Woo, S. H. Kim, “All-optical xor gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14, 1436–1438 (2002). [CrossRef]
  2. K. Chan, C.-K. Chan, L. K. Chen, F. Tong, “Demonstration of 20-gb/s all-optical xor gate by four-wave mixing in semiconductor optical amplifier with rz-dpsk modulated inputs,” IEEE Photon. Technol. Lett. 16, 897–899 (2004). [CrossRef]
  3. J. M. Dailey, S. K. Ibrahim, R. J. Manning, R. P. Webb, S. Lardenois, G. D. Maxwell, A. J. Poustie, “42.6 gbit/s fully integrated all-optical xor gate,” Electron. Lett. 45, 1047–1049 (2009). [CrossRef]
  4. R. Webb, R. Manning, G. Maxwell, A. Poustie, “40 gbit/s all-optical xor gate based on hybrid-integrated mach-zehnder interferometer,” Electron. Lett. 39, 79–81 (2003). [CrossRef]
  5. S. Randel, A. M. de Melo, K. Petermann, V. Marembert, C. Schubert, “Novel scheme for ultrafast all-optical xor operation,” J. Lightwave Technol. 22, 2808–2815 (2004). [CrossRef]
  6. I. Kang, M. Rasras, L. Buhl, M. Dinu, S. Cabot, M. Cappuzzo, L. Gomez, Y. Chen, S. Patel, N. Dutta, “All-optical xor and xnor operations at 86.4 gb/s using a pair of semiconductor optical amplifier mach-zehnder interferometers,” Opt. Express 17, 19062–19066 (2009). [CrossRef]
  7. Y. Feng, X. Zhao, L. Wang, C. Lou, “High-performance all-optical or/nor logic gate in a single semiconductor optical amplifier with delay interference filtering,” Appl. Opt. 48, 2638–2641 (2009). [CrossRef] [PubMed]
  8. C. Yu, L. Christen, T. Luo, Y. Wang, Z. Pan, L.-S. Yan, A. E. Willner, “All-optical xor gate using polarization rotation in single highly nonlinear fiber,” IEEE Photon. Technol. Lett. 17, 1232–1234 (2005). [CrossRef]
  9. J. Wang, Q. Sun, J. Sun, “All-optical 40 gbit/s csrz-dpsk logic xor gate and format conversion using four-wave mixing,” Opt. Express 17, 12555–12563 (2009). [CrossRef] [PubMed]
  10. B.-E. Olsson, P. A. Andrekson, “Polarization-independent all-optical and-gate using randomly birefringent fiber in a nonlinear optical loop mirror,” in “Optical Fiber Communication Conference and Exhibit, 1998. OFC’98., Technical Digest,” (IEEE), pp. 375–376.
  11. R. Radhakrishnan, M. Lakshmanan, J. Hietarinta, “Inelastic collision and switching of coupled bright solitons in optical fibers,” Phys. Rev. E 56, 2213–2216 (1997). [CrossRef]
  12. O. V. Kolokoltsev, R. Salas, V. Vountesmeri, “All-optical phase-independent logic elements based on phase shift induced by coherent soliton collisions,” J. Lightwave Technol. 20, 1048 (2002). [CrossRef]
  13. M. Peccianti, C. Conti, G. Assanto, A. De Luca, C. Umeton, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335–3337 (2002). [CrossRef]
  14. M. N. Islam, C. E. Soccolich, D. A. Miller, “Low-energy ultrafast fiber soliton logic gates,” Opt. Lett. 15, 909–911 (1990). [CrossRef] [PubMed]
  15. M. W. Chbat, B. Hong, M. N. Islam, C. E. Soccolich, P. R. Prucnal, “Ultrafast soliton-trapping and gate,” J. Lightwave Technol. 10, 2011–2016 (1992). [CrossRef]
  16. K. Steiglitz, “Time-gated manakov spatial solitons are computationally universal,” Phys. Rev. E 63, 016608(2001). [CrossRef]
  17. D. Taverner, N. Broderick, D. Richardson, M. Ibsen, R. Laming, “All-optical and gate based on coupled gap-soliton formation in a fiber bragg grating,” Opt. Lett. 23, 259–261 (1998). [CrossRef]
  18. Y. P. Shapira, M. Horowitz, “Optical and gate based on soliton interaction in a fiber bragg grating,” Opt. Lett. 32, 1211–1213 (2007). [CrossRef] [PubMed]
  19. J. Scheuer, M. Orenstein, “All-optical gates facilitated by soliton interactions in a multilayered kerr medium,” JOSA B 22, 1260–1267 (2005). [CrossRef]
  20. S. V. Serak, N. V. Tabiryan, M. Peccianti, G. Assanto, “Spatial soliton all-optical logic gates,” IEEE Photon. Technol. Lett. 18, 1287–1289 (2006). [CrossRef]
  21. G. Agrawal, Nonlinear Fiber Optics Principles and Applications (Electronic Industry Press, 2002).
  22. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986). [CrossRef] [PubMed]
  23. F. M. Mitschke, L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986). [CrossRef] [PubMed]
  24. C. L. Hagen, J. W. Walewski, S. T. Sanders, “Generation of a continuum extending to the midinfrared by pumping zblan fiber with an ultrafast 1550-nm source,” IEEE Photon. Technol. Lett. 18, 91–93 (2006). [CrossRef]
  25. C. Xu, X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28, 986–988 (2003). [CrossRef] [PubMed]
  26. S. Oda, A. Maruta, “All-optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self-phase modulation,” Opt. Express 14, 7895–7902 (2006). [CrossRef] [PubMed]
  27. J. H. Lee, J. van Howe, C. Xu, X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Select. Topics in Quantum Electron. 14, 713–723 (2008). [CrossRef]
  28. J. Lucek, K. Blow, “Optical-intensity dependent switching using soliton self-frequency shift,” Electron. Lett. 27, 882–884 (1991). [CrossRef]
  29. A. Bendahmane, O. Vanvincq, A. Mussot, A. Kudlinski, “Control of the soliton self-frequency shift dynamics using topographic optical fibers,” Opt. Lett. 38, 3390–3393 (2013). [CrossRef] [PubMed]
  30. R. Driben, B. A. Malomed, “Generation of tightly compressed solitons with a tunable frequency shift in raman-free fibers,” Opt. Lett. 38, 3623–3626 (2013). [CrossRef] [PubMed]
  31. K. Zhe, Y. Jin-Hui, L. Sha, X. Song-Lin, Y. Bin-Bin, S. Xin-Zhu, Y. Chong-Xiu, “Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques,” Chin. Phy. B. 22, 114211 (2013). [CrossRef]
  32. B. Memarzadeh Isfahani, T. Ahamdi Tameh, N. Granpayeh, A. R. Maleki Javan, “All-optical nor gate based on nonlinear photonic crystal microring resonators,” JOSA B 26, 1097–1102 (2009). [CrossRef]
  33. P. Andalib, N. Granpayeh, “All-optical ultracompact photonic crystal and gate based on nonlinear ring resonators,” JOSA B 26, 10–16 (2009). [CrossRef]
  34. T. Lakoba, D. Kaup, “Influence of the raman effect on dispersion-managed solitons and their interchannel collisions,” Opt. Lett. 24, 808–810 (1999). [CrossRef]
  35. A. Zheltikov, “Perturbative analytical treatment of adiabatically moderated soliton self-frequency shift,” Phys. Rev. E 75, 037603 (2007). [CrossRef]
  36. D. Skryabin, F. Luan, J. Knight, P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003). [CrossRef] [PubMed]
  37. R. Driben, B. Malomed, A. Yulin, D. Skryabin, “Newton’s cradles in optics: From n-soliton fission to soliton chains,” Phys. Rev. A 87, 063808 (2013). [CrossRef]
  38. A. A. Voronin, A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008). [CrossRef] [PubMed]
  39. P. Mamyshev, L. Mollenauer, “Stability of soliton propagation with sliding-frequency guiding filters,” Opt. Lett. 19, 2083–2085 (1994). [CrossRef] [PubMed]
  40. O. V. Sinkin, R. Holzlhner, J. Zweck, C. R. Menyuk, “Optimization of the split-step fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21, 61 (2003). [CrossRef]
  41. M. Ablowitz, H. Segur, “Solitons, nonlinear evolution equations and inverse scattering. by m. j,” J. Fluid Mech 244, 721–725 (1992).
  42. A. Nakamura, “A direct method of calculating periodic wave solutions to nonlinear evolution equations. ii. exact one-and two-periodic wave solution of the coupled bilinear equations,” Journal of the Physical Society of Japan 48, 1365–1370 (1980). [CrossRef]
  43. C. Luo, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos, “Cerenkov radiation in photonic crystals,” Science 299, 368–371 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited