OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8490–8502

Whispering gallery mode nanodisk resonator based on layered metal-dielectric waveguide

Fei Lou, Min Yan, Lars Thylen, Min Qiu, and Lech Wosinski  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 8490-8502 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2205 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper proposes a layered metal-dielectric waveguide consisting of a stack of alternating metal and dielectric films which enables an ultracompact mode confinement. The properties of whispering gallery modes supported by disk resonators based on such waveguides are investigated for achieving a large Purcell factor. We show that by stacking three layers of 10 nm thick silver with two layers of 50 nm dielectric layers (of refractive index n) in sequence, the disk radius can be as small as 61 nm λ 0 /(7n) and the mode volume is only 0.0175 ( λ 0 /(2n)) 3 . When operating at 40 K, the cavity’s Q-factor can be ~670; Purcell factor can be as large as 2.3× 10 4 , which is more than five times larger than that achievable in a metal-dielectric-metal disk cavity in the same condition. When more dielectric layers with smaller thicknesses are used, even more compact confinement can be achieved. For example, the radius of a cavity consisting of seven dielectric-layer waveguide can be shrunk down to λ 0 /(13.5n) , corresponding to a mode volume of 0.005 λ 0 /(2n) ) 3 , and Purcell factor can be enhanced to 7.3× 10 4 at 40 K. The influence of parameters like thicknesses of dielectric and metal films, cavity size, and number of dielectric layers is also comprehensively studied. The proposed waveguide and nanodisk cavity provide an alternative for ultracompact light confinement, and can find applications where a strong light-matter interaction is necessary.

© 2014 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

Original Manuscript: January 3, 2014
Revised Manuscript: March 17, 2014
Manuscript Accepted: March 19, 2014
Published: April 2, 2014

Fei Lou, Min Yan, Lars Thylen, Min Qiu, and Lech Wosinski, "Whispering gallery mode nanodisk resonator based on layered metal-dielectric waveguide," Opt. Express 22, 8490-8502 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  2. T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85(25), 6113–6115 (2004). [CrossRef]
  3. K. Srinivasan, M. Borselli, O. Painter, A. Stintz, S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14(3), 1094–1105 (2006). [CrossRef] [PubMed]
  4. H. Y. Ryu, M. Notomi, Y. H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett. 83(21), 4294–4296 (2003). [CrossRef]
  5. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  6. D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010). [CrossRef]
  7. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007). [CrossRef]
  8. S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010). [CrossRef] [PubMed]
  9. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009). [CrossRef] [PubMed]
  10. R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett. 10(12), 4851–4857 (2010). [CrossRef] [PubMed]
  11. A. V. Krasavin, S. Randhawa, J.-S. Bouillard, J. Renger, R. Quidant, A. V. Zayats, “Optically-programmable nonlinear photonic component for dielectric-loaded plasmonic circuitry,” Opt. Express 19(25), 25222–25229 (2011). [CrossRef] [PubMed]
  12. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  13. R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011). [CrossRef] [PubMed]
  14. Y. Song, J. Wang, M. Yan, M. Qiu, “Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor,” J. Opt. 13(7), 075001 (2011). [CrossRef]
  15. F. Lou, D. Dai, L. Thylen, L. Wosinski, “Design and analysis of ultra-compact EO polymer modulators based on hybrid plasmonic microring resonators,” Opt. Express 21(17), 20041–20051 (2013). [CrossRef] [PubMed]
  16. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012). [CrossRef] [PubMed]
  17. M. Kuttge, F. J. García de Abajo, A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10(5), 1537–1541 (2010). [CrossRef] [PubMed]
  18. H. T. Miyazaki, Y. Kurokawa, “Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity,” Phys. Rev. Lett. 96(9), 097401 (2006). [CrossRef] [PubMed]
  19. R. Zia, M. D. Selker, P. B. Catrysse, M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004). [CrossRef] [PubMed]
  20. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]
  21. S.-H. Kwon, “Deep subwavelength plasmonic whispering gallery-mode cavity,” Opt. Express 20, 918–924 (2012).
  22. M. Yan, L. Thylén, M. Qiu, “Layered metal-dielectric waveguide: subwavelength guidance, leveraged modulation sensitivity in mode index, and reversed mode ordering,” Opt. Express 19(4), 3818–3824 (2011). [CrossRef] [PubMed]
  23. Y. He, S. He, J. Gao, X. Yang, “Nanoscale metamaterial optical waveguides with ultrahigh refractive indices,” J. Opt. Soc. Am. B 29(9), 2559–2566 (2012). [CrossRef]
  24. Y. He, L. Sun, S. He, X. Yang, “Deep subwavelength beam propagation in extremely loss-anisotropic metamaterials,” J. Opt. 15(5), 055105 (2013). [CrossRef]
  25. X. Yang, J. Yao, J. Rho, X. Yin, X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics 6(7), 450–454 (2012). [CrossRef]
  26. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. M. Menon, “Topological Transitions in Metamaterials,” Science 336(6078), 205–209 (2012). [CrossRef] [PubMed]
  27. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  28. Y. Francescato, V. Giannini, S. A. Maier, “Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon,” New J. Phys. 15(6), 063020 (2013). [CrossRef]
  29. Q. Wang, H. Zhao, X. Du, W. Zhang, M. Qiu, Q. Li, “Hybrid photonic-plasmonic molecule based on metal/Si disks,” Opt. Express 21(9), 11037–11047 (2013). [CrossRef] [PubMed]
  30. W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, V. M. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Opt. Express 18(5), 5124–5134 (2010). [CrossRef] [PubMed]
  31. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005). [CrossRef] [PubMed]
  32. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited